R/hypoglycemia_01.R

Defines functions hypoglycemia_01

Documented in hypoglycemia_01

#' @title Hypoglycemia-01
#'
#' @description
#'
#' The `hypoglycemia_01` function calculates the NEMSQA measure evaluating how
#' often hypoglycemic patients with altered mental status receive hypoglycemia
#' treatment.
#'
#' @param df A data frame or tibble containing emergency response records.
#'   Default is `NULL`.
#' @param patient_scene_table A data.frame or tibble containing at least
#'   ePatient and eScene fields as a fact table. Default is `NULL`.
#' @param response_table A data.frame or tibble containing at least the
#'   eResponse fields needed for this measure's calculations. Default is `NULL`.
#' @param situation_table A data.frame or tibble containing at least the
#'   eSituation fields needed for this measure's calculations. Default is
#'   `NULL`.
#' @param vitals_table A data.frame or tibble containing at least the eVitals
#'   fields needed for this measure's calculations. Default is `NULL`.
#' @param medications_table A data.frame or tibble containing at least the
#'   eMedications fields needed for this measure's calculations. Default is
#'   `NULL`.
#' @param procedures_table A data.frame or tibble containing at least the
#'   eProcedures fields needed for this measure's calculations. Default is
#'   `NULL`.
#' @param erecord_01_col Column representing the unique record identifier.
#' @param incident_date_col Column that contains the incident date. This
#'   defaults to `NULL` as it is optional in case not available due to PII
#'   restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#'   defaults to `NULL` as it is optional in case not available due to PII
#'   restrictions.
#' @param epatient_15_col Column representing the patient's numeric age agnostic
#'   of unit.
#' @param epatient_16_col Column representing the patient's age unit ("Years",
#'   "Months", "Days", "Hours", or "Minute").
#' @param eresponse_05_col Column containing response type codes.
#' @param esituation_11_col Column for primary impression fields, containing
#'   ICD-10 codes.
#' @param esituation_12_col Column for secondary impression fields, containing
#'   ICD-10 codes.
#' @param evitals_18_col Column for blood glucose levels.
#' @param evitals_23_col Column for Glasgow Coma Scale (GCS) scores.
#' @param evitals_26_col Column for AVPU alertness levels.
#' @param emedications_03_col Column for administered medications.
#' @param eprocedures_03_col Column for procedures performed.
#' @param confidence_interval `r lifecycle::badge("experimental")` Logical. If
#'   `TRUE`, the function calculates a confidence interval for the proportion
#'   estimate.
#' @param method `r lifecycle::badge("experimental")`Character. Specifies the
#'   method used to calculate confidence intervals. Options are `"wilson"`
#'   (Wilson score interval) and `"clopper-pearson"` (exact binomial interval).
#'   Partial matching is supported, so `"w"` and `"c"` can be used as shorthand.
#' @param conf.level `r lifecycle::badge("experimental")`Numeric. The confidence
#'   level for the interval, expressed as a proportion (e.g., 0.95 for a 95%
#'   confidence interval). Defaults to 0.95.
#' @param correct `r lifecycle::badge("experimental")`Logical. If `TRUE`,
#'   applies a continuity correction to the Wilson score interval when `method =
#'   "wilson"`. Defaults to `TRUE`.
#' @param ... optional additional arguments to pass onto `dplyr::summarize`.
#'
#' @return A data.frame summarizing results for two population groups (All,
#'   Adults and Peds) with the following columns:
#' - `pop`: Population type (All, Adults, and Peds).
#' - `numerator`: Count of incidents meeting the measure.
#' - `denominator`: Total count of included incidents.
#' - `prop`: Proportion of incidents meeting the measure.
#' - `prop_label`: Proportion formatted as a percentage with a specified number
#'    of decimal places.
#' - `lower_ci`: Lower bound of the confidence interval for `prop`
#'    (if `confidence_interval = TRUE`).
#' - `upper_ci`: Upper bound of the confidence interval for `prop`
#'    (if `confidence_interval = TRUE`).
#'
#' @examples
#'
#' # Synthetic test data
#' test_data <- tibble::tibble(
#'   erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#'   epatient_15 = c(34, 5, 45, 2, 60),  # Ages
#'   epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
#'   eresponse_05 = rep(2205001, 5),
#'   esituation_11 = c(rep("E13.64", 3), rep("E16.2", 2)),
#'   esituation_12 = c(rep("E13.64", 2), rep("E16.2", 3)),
#'   emedications_03 = c(372326, 376937,
#'                       377980, 4850,
#'                       4832),
#'   evitals_18 = c(60, 59, 58, 57, 56),
#'   evitals_23 = c(16, 15, 14, 13, 12),
#'   evitals_26 = c("Alert", "Painful", "Verbal", "Unresponsive", "Alert"),
#'   eprocedures_03 = rep("710925007", 5)
#' )
#'
#' # Run the function
#' # Return 95% confidence intervals using the Wilson method
#' hypoglycemia_01(
#'   df = test_data,
#'   erecord_01_col = erecord_01,
#'   epatient_15_col = epatient_15,
#'   epatient_16_col = epatient_16,
#'   eresponse_05_col = eresponse_05,
#'   esituation_11_col = esituation_11,
#'   esituation_12_col = esituation_12,
#'   emedications_03_col = emedications_03,
#'   evitals_18_col = evitals_18,
#'   evitals_23_col = evitals_23,
#'   evitals_26_col = evitals_26,
#'   eprocedures_03_col = eprocedures_03,
#'   confidence_interval = TRUE
#' )
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
hypoglycemia_01 <- function(df = NULL,
                            patient_scene_table = NULL,
                            response_table = NULL,
                            situation_table = NULL,
                            vitals_table = NULL,
                            medications_table = NULL,
                            procedures_table = NULL,
                            erecord_01_col,
                            incident_date_col = NULL,
                            patient_DOB_col = NULL,
                            epatient_15_col,
                            epatient_16_col,
                            eresponse_05_col,
                            esituation_11_col,
                            esituation_12_col,
                            evitals_18_col,
                            evitals_23_col,
                            evitals_26_col,
                            emedications_03_col,
                            eprocedures_03_col,
                            confidence_interval = FALSE,
                            method = c("wilson", "clopper-pearson"),
                            conf.level = 0.95,
                            correct = TRUE,
                            ...) {

  # Set default method and adjustment method
  method <- match.arg(method, choices = c("wilson", "clopper-pearson"))

  # utilize applicable tables to analyze the data for the measure
  if(
    all(
      !is.null(patient_scene_table),
      !is.null(response_table),
      !is.null(situation_table),
      !is.null(vitals_table),
      !is.null(medications_table),
      !is.null(procedures_table)
    )

    && is.null(df)

  ) {

    # Start timing the function execution
    start_time <- Sys.time()

    # header
    cli::cli_h1("Hypoglycemia-01")

    # header
    cli::cli_h2("Gathering Records for Hypoglycemia-01")

    # gather the population of interest
    hypoglycemia_01_populations <- hypoglycemia_01_population(
                           patient_scene_table = patient_scene_table,
                           response_table = response_table,
                           situation_table = situation_table,
                           vitals_table = vitals_table,
                           medications_table = medications_table,
                           procedures_table = procedures_table,
                           erecord_01_col = {{ erecord_01_col }},
                           incident_date_col = {{ incident_date_col }},
                           patient_DOB_col = {{ patient_DOB_col }},
                           epatient_15_col = {{ epatient_15_col}},
                           epatient_16_col = {{ epatient_16_col }},
                           eresponse_05_col = {{ eresponse_05_col }},
                           esituation_11_col = {{ esituation_11_col }},
                           esituation_12_col = {{ esituation_12_col }},
                           evitals_18_col = {{ evitals_18_col }},
                           evitals_23_col = {{ evitals_23_col }},
                           evitals_26_col = {{ evitals_26_col }},
                           emedications_03_col = {{ emedications_03_col }},
                           eprocedures_03_col = {{ eprocedures_03_col }}
                           )

    # create a separator
    cli::cli_text("\n")

    # header for calculations
    cli::cli_h2("Calculating Hypoglycemia-01")

    # summary
    hypoglycemia.01 <- results_summarize(total_population = hypoglycemia_01_populations$initial_population,
                                         adult_population = hypoglycemia_01_populations$adults,
                                         peds_population = hypoglycemia_01_populations$peds,
                                         measure_name = "Hypoglycemia-01",
                                         population_names = c("all", "adults", "peds"),
                                         numerator_col = TREATMENT,
                                         confidence_interval = confidence_interval,
                                         method = method,
                                         conf.level = conf.level,
                                         correct = correct,
                                         ...)

    # create a separator
    cli::cli_text("\n")

    # Calculate and display the runtime
    end_time <- Sys.time()
    run_time_secs <- difftime(end_time, start_time, units = "secs")
    run_time_secs <- as.numeric(run_time_secs)

    if (run_time_secs >= 60) {

      run_time <- round(run_time_secs / 60, 2)  # Convert to minutes and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")

    } else {

      run_time <- round(run_time_secs, 2)  # Keep in seconds and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")

    }

    # create a separator
    cli::cli_text("\n")

    # when confidence interval is "wilson", check for n < 10
    # to warn about incorrect Chi-squared approximation
    if (any(hypoglycemia.01$denominator < 10) && method == "wilson" && confidence_interval) {

      cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")

    }

    return(hypoglycemia.01)

  } else if(

    all(
      is.null(patient_scene_table),
      is.null(response_table),
      is.null(situation_table),
      is.null(vitals_table),
      is.null(medications_table),
      is.null(procedures_table)
    )

    && !is.null(df)
  )

  # Start timing the function execution
  start_time <- Sys.time()

  # header
  cli::cli_h1("Hypoglycemia-01")

  # header
  cli::cli_h2("Gathering Records for Hypoglycemia-01")

    # gather the population of interest
    hypoglycemia_01_populations <- hypoglycemia_01_population(
                                                  df = df,
                                                  erecord_01_col = {{ erecord_01_col }},
                                                  incident_date_col = {{ incident_date_col }},
                                                  patient_DOB_col = {{ patient_DOB_col }},
                                                  epatient_15_col = {{ epatient_15_col}},
                                                  epatient_16_col = {{ epatient_16_col }},
                                                  eresponse_05_col = {{ eresponse_05_col }},
                                                  esituation_11_col = {{ esituation_11_col }},
                                                  esituation_12_col = {{ esituation_12_col }},
                                                  evitals_18_col = {{ evitals_18_col }},
                                                  evitals_23_col = {{ evitals_23_col }},
                                                  evitals_26_col = {{ evitals_26_col }},
                                                  emedications_03_col = {{ emedications_03_col }},
                                                  eprocedures_03_col = {{ eprocedures_03_col }}
                                                  )

    # create a separator
    cli::cli_text("\n")

    # header for calculations
    cli::cli_h2("Calculating Hypoglycemia-01")

    # summary
    hypoglycemia.01 <- results_summarize(total_population = hypoglycemia_01_populations$initial_population,
                                         adult_population = hypoglycemia_01_populations$adults,
                                         peds_population = hypoglycemia_01_populations$peds,
                                         measure_name = "Hypoglycemia-01",
                                         population_names = c("all", "adults", "peds"),
                                         numerator_col = TREATMENT,
                                         confidence_interval = confidence_interval,
                                         method = method,
                                         conf.level = conf.level,
                                         correct = correct,
                                         ...)

    # create a separator
    cli::cli_text("\n")

    # Calculate and display the runtime
    end_time <- Sys.time()
    run_time_secs <- difftime(end_time, start_time, units = "secs")
    run_time_secs <- as.numeric(run_time_secs)

    if (run_time_secs >= 60) {

      run_time <- round(run_time_secs / 60, 2)  # Convert to minutes and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")

    } else {

      run_time <- round(run_time_secs, 2)  # Keep in seconds and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")

    }

    # create a separator
    cli::cli_text("\n")

    # when confidence interval is "wilson", check for n < 10
    # to warn about incorrect Chi-squared approximation
    if (any(hypoglycemia.01$denominator < 10) && method == "wilson" && confidence_interval) {

      cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")

    }

    return(hypoglycemia.01)
}

Try the nemsqar package in your browser

Any scripts or data that you put into this service are public.

nemsqar documentation built on Aug. 8, 2025, 6:15 p.m.