Nothing
#' @title Respiratory-02 Calculation
#'
#' @description
#'
#' The `respiratory_02` function calculates metrics for pediatric and adult
#' respiratory populations based on pre-defined criteria, such as low oxygen
#' saturation and specific medication or procedure codes. It returns a summary
#' table of the overall, pediatric, and adult populations, showing counts and
#' proportions.
#'
#' @param df A data frame containing incident data with each row representing an
#' observation.
#' @param patient_scene_table A data.frame or tibble containing at least
#' epatient and escene fields as a fact table.
#' @param response_table A data.frame or tibble containing at least the
#' eresponse fields needed for this measure's calculations.
#' @param vitals_table A data.frame or tibble containing at least the evitals
#' fields needed for this measure's calculations.
#' @param medications_table A data.frame or tibble containing only the
#' emedications fields needed for this measure's calculations.
#' @param procedures_table A data.frame or tibble containing only the
#' eprocedures fields needed for this measure's calculations.
#' @param erecord_01_col Column name for eRecord.01, used to form a unique
#' patient ID.
#' @param incident_date_col Column that contains the incident date. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param epatient_15_col integer Column giving the calculated age value.
#' @param epatient_16_col Column giving the provided age unit value.
#' @param eresponse_05_col Column name for response codes (e.g., incident type).
#' @param evitals_12_col Column name for oxygen saturation (SpO2) values.
#' @param emedications_03_col Column name for medication codes.
#' @param eprocedures_03_col Column name for procedure codes.
#' @param confidence_interval `r lifecycle::badge("experimental")` Logical. If
#' `TRUE`, the function calculates a confidence interval for the proportion
#' estimate.
#' @param method `r lifecycle::badge("experimental")`Character. Specifies the
#' method used to calculate confidence intervals. Options are `"wilson"`
#' (Wilson score interval) and `"clopper-pearson"` (exact binomial interval).
#' Partial matching is supported, so `"w"` and `"c"` can be used as shorthand.
#' @param conf.level `r lifecycle::badge("experimental")`Numeric. The confidence
#' level for the interval, expressed as a proportion (e.g., 0.95 for a 95%
#' confidence interval). Defaults to 0.95.
#' @param correct `r lifecycle::badge("experimental")`Logical. If `TRUE`,
#' applies a continuity correction to the Wilson score interval when `method =
#' "wilson"`. Defaults to `TRUE`.
#' @param ... optional additional arguments to pass onto `dplyr::summarize`.
#'
#' @return A data.frame summarizing results for two population groups (All,
#' Adults and Peds) with the following columns:
#' - `pop`: Population type (All, Adults, and Peds).
#' - `numerator`: Count of incidents meeting the measure.
#' - `denominator`: Total count of included incidents.
#' - `prop`: Proportion of incidents meeting the measure.
#' - `prop_label`: Proportion formatted as a percentage with a specified number
#' of decimal places.
#' - `lower_ci`: Lower bound of the confidence interval for `prop`
#' (if `confidence_interval = TRUE`).
#' - `upper_ci`: Upper bound of the confidence interval for `prop`
#' (if `confidence_interval = TRUE`).
#'
#' @examples
#'
#' # Synthetic test data
#' test_data <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' epatient_15 = c(34, 5, 45, 2, 60), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
#' eresponse_05 = rep(2205001, 5),
#' emedications_03 = c("Oxygen", "Oxygen", "Oxygen", "Oxygen", "Oxygen"),
#' evitals_12 = c(60, 59, 58, 57, 56),
#' eprocedures_03 = rep("applicable thing", 5)
#' )
#'
#' # Run the function
#' # Return 95% confidence intervals using the Wilson method
#' respiratory_02(
#' df = test_data,
#' erecord_01_col = erecord_01,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' emedications_03_col = emedications_03,
#' evitals_12_col = evitals_12,
#' eprocedures_03_col = eprocedures_03,
#' confidence_interval = TRUE
#' )
#'
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
respiratory_02 <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
vitals_table = NULL,
medications_table = NULL,
procedures_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
evitals_12_col,
emedications_03_col,
eprocedures_03_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...) {
# Set default method and adjustment method
method <- match.arg(method, choices = c("wilson", "clopper-pearson"))
# utilize applicable tables to analyze the data for the measure
if(
all(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(vitals_table),
!is.null(medications_table),
!is.null(procedures_table)
) && is.null(df)
) {
# Start timing the function execution
start_time <- Sys.time()
# header
cli::cli_h1("Respiratory-02")
# header
cli::cli_h2("Gathering Records for Respiratory-02")
# gather the population of interest
respiratory_02_populations <- respiratory_02_population(
patient_scene_table = patient_scene_table,
response_table = response_table,
vitals_table = vitals_table,
procedures_table = procedures_table,
medications_table = medications_table,
erecord_01_col = {{ erecord_01_col }},
incident_date_col = {{ incident_date_col }},
patient_DOB_col = {{ patient_DOB_col}},
epatient_15_col = {{ epatient_15_col}},
epatient_16_col = {{ epatient_16_col }},
eresponse_05_col = {{ eresponse_05_col }},
evitals_12_col = {{ evitals_12_col }},
emedications_03_col = {{ emedications_03_col }},
eprocedures_03_col = {{ eprocedures_03_col }}
)
# create a separator
cli::cli_text("\n")
# header for calculations
cli::cli_h2("Calculating Respiratory-02")
# summary
respiratory.02 <- results_summarize(total_population = respiratory_02_populations$initial_population,
adult_population = respiratory_02_populations$adults,
peds_population = respiratory_02_populations$peds,
population_names = c("all", "adults", "peds"),
measure_name = "Respiratory-02",
numerator_col = OXYGEN,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...)
# create a separator
cli::cli_text("\n")
# Calculate and display the runtime
end_time <- Sys.time()
run_time_secs <- difftime(end_time, start_time, units = "secs")
run_time_secs <- as.numeric(run_time_secs)
if (run_time_secs >= 60) {
run_time <- round(run_time_secs / 60, 2) # Convert to minutes and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")
} else {
run_time <- round(run_time_secs, 2) # Keep in seconds and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")
}
# create a separator
cli::cli_text("\n")
# when confidence interval is "wilson", check for n < 10
# to warn about incorrect Chi-squared approximation
if (any(respiratory.02$denominator < 10) && method == "wilson" && confidence_interval) {
cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")
}
return(respiratory.02)
} else if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(vitals_table),
is.null(medications_table),
is.null(procedures_table)
) && !is.null(df)
# utilize a dataframe to analyze the data for the measure analytics
) {
# Start timing the function execution
start_time <- Sys.time()
# header
cli::cli_h1("Respiratory-02")
# header
cli::cli_h2("Gathering Records for Respiratory-02")
# gather the population of interest
respiratory_02_populations <- respiratory_02_population(
df = df,
erecord_01_col = {{ erecord_01_col }},
incident_date_col = {{ incident_date_col }},
patient_DOB_col = {{ patient_DOB_col}},
epatient_15_col = {{ epatient_15_col}},
epatient_16_col = {{ epatient_16_col }},
eresponse_05_col = {{ eresponse_05_col }},
evitals_12_col = {{ evitals_12_col }},
emedications_03_col = {{ emedications_03_col }},
eprocedures_03_col = {{ eprocedures_03_col }}
)
# create a separator
cli::cli_text("\n")
# header for calculations
cli::cli_h2("Calculating Respiratory-02")
# summary
respiratory.02 <- results_summarize(total_population = respiratory_02_populations$initial_population,
adult_population = respiratory_02_populations$adults,
peds_population = respiratory_02_populations$peds,
population_names = c("all", "adults", "peds"),
measure_name = "Respiratory-02",
numerator_col = OXYGEN,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...)
# create a separator
cli::cli_text("\n")
# Calculate and display the runtime
end_time <- Sys.time()
run_time_secs <- difftime(end_time, start_time, units = "secs")
run_time_secs <- as.numeric(run_time_secs)
if (run_time_secs >= 60) {
run_time <- round(run_time_secs / 60, 2) # Convert to minutes and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")
} else {
run_time <- round(run_time_secs, 2) # Keep in seconds and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")
}
# create a separator
cli::cli_text("\n")
# when confidence interval is "wilson", check for n < 10
# to warn about incorrect Chi-squared approximation
if (any(respiratory.02$denominator < 10) && method == "wilson" && confidence_interval) {
cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")
}
return(respiratory.02)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.