R/safety_04.R

Defines functions safety_04

Documented in safety_04

#' @title Safety-04 Calculation
#'
#' @description
#'
#' The `safety_04` function processes EMS incident data for specific safety and
#' transport criteria, filtering by patient age and incident type to identify
#' cases that meet specified exclusion or inclusion criteria. This function
#' accommodates data with various EMS-specific codes, age descriptors, and
#' procedure identifiers.
#'
#' @param df A data frame or tibble containing EMS data where each row
#'   represents an individual observation.
#' @param patient_scene_table A data frame or tibble containing fields from
#'   epatient and escene needed for this measure's calculations.
#' @param response_table A data frame or tibble containing fields from eresponse
#'   needed for this measure's calculations.
#' @param arrest_table A data frame or tibble containing fields from earrest
#'   needed for this measure's calculations.
#' @param injury_table A data frame or tibble containing fields from einjury
#'   needed for this measure's calculations.
#' @param procedures_table A data frame or tibble containing fields from
#'   eprocedures needed for this measure's calculations.
#' @param disposition_table A data frame or tibble containing fields from
#'   edisposition needed for this measure's calculations.
#' @param erecord_01_col The column containing unique record identifiers for
#'   each encounter.
#' @param incident_date_col Column that contains the incident date. This
#'   defaults to `NULL` as it is optional in case not available due to PII
#'   restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#'   defaults to `NULL` as it is optional in case not available due to PII
#'   restrictions.
#' @param epatient_15_col Column name indicating the patient age.
#' @param epatient_16_col Column name for the unit of age (e.g., "Years,"
#'   "Months").
#' @param eresponse_05_col Column containing response transport codes.
#' @param earrest_01_col Column with cardiac arrest status information.
#' @param einjury_03_col Column describing traumatic injuries, expected as a
#'   list or text-separated entries.
#' @param eprocedures_03_col Column listing procedures, assumed to contain
#'   multiple procedure codes/texts in each cell.
#' @param edisposition_14_col Column for transport dispositions.
#' @param transport_disposition_col Columns for primary and secondary transport
#'   dispositions.
#' @param confidence_interval `r lifecycle::badge("experimental")` Logical. If
#'   `TRUE`, the function calculates a confidence interval for the proportion
#'   estimate.
#' @param method `r lifecycle::badge("experimental")`Character. Specifies the
#'   method used to calculate confidence intervals. Options are `"wilson"`
#'   (Wilson score interval) and `"clopper-pearson"` (exact binomial interval).
#'   Partial matching is supported, so `"w"` and `"c"` can be used as shorthand.
#' @param conf.level `r lifecycle::badge("experimental")`Numeric. The confidence
#'   level for the interval, expressed as a proportion (e.g., 0.95 for a 95%
#'   confidence interval). Defaults to 0.95.
#' @param correct `r lifecycle::badge("experimental")`Logical. If `TRUE`,
#'   applies a continuity correction to the Wilson score interval when `method =
#'   "wilson"`. Defaults to `TRUE`.
#' @param ... optional additional arguments to pass onto `dplyr::summarize`.
#'
#' @return A data.frame summarizing results for two population groups (All,
#'   Adults and Peds) with the following columns:
#' - `pop`: Population type (All, Adults, and Peds).
#' - `numerator`: Count of incidents meeting the measure.
#' - `denominator`: Total count of included incidents.
#' - `prop`: Proportion of incidents meeting the measure.
#' - `prop_label`: Proportion formatted as a percentage with a specified number
#'    of decimal places.
#' - `lower_ci`: Lower bound of the confidence interval for `prop`
#'    (if `confidence_interval = TRUE`).
#' - `upper_ci`: Upper bound of the confidence interval for `prop`
#'    (if `confidence_interval = TRUE`).
#'
#' @examples
#'
#' # Synthetic test data
#'   test_data <- tibble::tibble(
#'     erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#'     epatient_15 = c(34, 5, 45, 2, 60),  # Ages
#'     epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
#'     eresponse_05 = rep(2205001, 5),
#'     earrest_01 = rep("No", 5),
#'     einjury_03 = rep("non-injury", 5),
#'     edisposition_14 = rep(4214001, 5),
#'     edisposition_30 = rep(4230001, 5),
#'     eprocedures_03 = rep("other response", 5)
#'   )
#'
#' # Run the function
#' # Return 95% confidence intervals using the Wilson method
#'   safety_04(
#'     df = test_data,
#'     erecord_01_col = erecord_01,
#'     epatient_15_col = epatient_15,
#'     epatient_16_col = epatient_16,
#'     eresponse_05_col = eresponse_05,
#'     earrest_01_col = earrest_01,
#'     einjury_03_col = einjury_03,
#'     edisposition_14_col = edisposition_14,
#'     transport_disposition_col = edisposition_30,
#'     eprocedures_03_col = eprocedures_03,
#'     confidence_interval = TRUE
#'   )
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
safety_04 <- function(df = NULL,
                      patient_scene_table = NULL,
                      response_table = NULL,
                      arrest_table = NULL,
                      injury_table = NULL,
                      procedures_table = NULL,
                      disposition_table = NULL,
                      erecord_01_col,
                      incident_date_col = NULL,
                      patient_DOB_col = NULL,
                      epatient_15_col,
                      epatient_16_col,
                      eresponse_05_col,
                      earrest_01_col,
                      einjury_03_col,
                      eprocedures_03_col,
                      edisposition_14_col,
                      transport_disposition_col,
                      confidence_interval = FALSE,
                      method = c("wilson", "clopper-pearson"),
                      conf.level = 0.95,
                      correct = TRUE,
                      ...) {

  # Set default method and adjustment method
  method <- match.arg(method, choices = c("wilson", "clopper-pearson"))

  # utilize applicable tables to analyze the data for the measure
  if (
    all(
      !is.null(patient_scene_table),
      !is.null(response_table),
      !is.null(arrest_table),
      !is.null(injury_table),
      !is.null(procedures_table),
      !is.null(disposition_table)
    ) && is.null(df)

  ) {

    # Start timing the function execution
    start_time <- Sys.time()

    # header
    cli::cli_h1("Safety-04")

    # header
    cli::cli_h2("Gathering Records for Safety-04")

    # gather the population of interest
    safety_04_populations <- safety_04_population(patient_scene_table = patient_scene_table,
                                                  response_table = response_table,
                                                  arrest_table = arrest_table,
                                                  injury_table = injury_table,
                                                  procedures_table = procedures_table,
                                                  disposition_table = disposition_table,
                                                  erecord_01_col = {{ erecord_01_col }},
                                                  incident_date_col = {{ incident_date_col }},
                                                  patient_DOB_col = {{ patient_DOB_col }},
                                                  epatient_15_col = {{ epatient_15_col }},
                                                  epatient_16_col = {{ epatient_16_col }},
                                                  eresponse_05_col = {{ eresponse_05_col }},
                                                  earrest_01_col = {{ earrest_01_col }},
                                                  einjury_03_col = {{ einjury_03_col }},
                                                  eprocedures_03_col = {{ eprocedures_03_col }},
                                                  edisposition_14_col = {{ edisposition_14_col }},
                                                  transport_disposition_col = {{ transport_disposition_col }}
                                                  )

    # create a separator
    cli::cli_text("\n")

    # header for calculations
    cli::cli_h2("Calculating Safety-04")

    # summary
    safety.04 <- results_summarize(
      total_population = NULL,
      adult_population = NULL,
      peds_population = safety_04_populations$peds,
      measure_name = "Safety-04",
      population_names = "peds",
      numerator_col = CAR_SEAT,
      confidence_interval = confidence_interval,
      method = method,
      conf.level = conf.level,
      correct = correct,
      ...
      )

    # create a separator
    cli::cli_text("\n")

    # Calculate and display the runtime
    end_time <- Sys.time()
    run_time_secs <- difftime(end_time, start_time, units = "secs")
    run_time_secs <- as.numeric(run_time_secs)

    if (run_time_secs >= 60) {

      run_time <- round(run_time_secs / 60, 2)  # Convert to minutes and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")

    } else {

      run_time <- round(run_time_secs, 2)  # Keep in seconds and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")

    }

    # create a separator
    cli::cli_text("\n")

    # when confidence interval is "wilson", check for n < 10
    # to warn about incorrect Chi-squared approximation
    if (any(safety.04$denominator < 10) && method == "wilson" && confidence_interval) {

      cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")

    }

    return(safety.04)

  } else if(

    all(
      is.null(patient_scene_table),
      is.null(response_table),
      is.null(arrest_table),
      is.null(injury_table),
      is.null(procedures_table),
      is.null(disposition_table)
    ) && !is.null(df)

    # utilize a dataframe to analyze the data for the measure analytics

  ) {

    # Start timing the function execution
    start_time <- Sys.time()

    # header
    cli::cli_h1("Safety-04")

    # header
    cli::cli_h2("Gathering Records for Safety-04")

    # gather the population of interest
    safety_04_populations <- safety_04_population(df = df,
                                                  erecord_01_col = {{ erecord_01_col }},
                                                  incident_date_col = {{ incident_date_col }},
                                                  patient_DOB_col = {{ patient_DOB_col }},
                                                  epatient_15_col = {{ epatient_15_col }},
                                                  epatient_16_col = {{ epatient_16_col }},
                                                  eresponse_05_col = {{ eresponse_05_col }},
                                                  earrest_01_col = {{ earrest_01_col }},
                                                  einjury_03_col = {{ einjury_03_col }},
                                                  eprocedures_03_col = {{ eprocedures_03_col }},
                                                  edisposition_14_col = {{ edisposition_14_col }},
                                                  transport_disposition_col = {{ transport_disposition_col }}
                                                  )

    # create a separator
    cli::cli_text("\n")

    # header for calculations
    cli::cli_h2("Calculating Safety-04")

    # summary
    safety.04 <- results_summarize(
      total_population = NULL,
      adult_population = NULL,
      peds_population = safety_04_populations$peds,
      measure_name = "Safety-04",
      population_names = "peds",
      numerator_col = CAR_SEAT,
      confidence_interval = confidence_interval,
      method = method,
      conf.level = conf.level,
      correct = correct,
      ...
    )

    # create a separator
    cli::cli_text("\n")

    # Calculate and display the runtime
    end_time <- Sys.time()
    run_time_secs <- difftime(end_time, start_time, units = "secs")
    run_time_secs <- as.numeric(run_time_secs)

    if (run_time_secs >= 60) {

      run_time <- round(run_time_secs / 60, 2)  # Convert to minutes and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")

    } else {

      run_time <- round(run_time_secs, 2)  # Keep in seconds and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")

    }

    # create a separator
    cli::cli_text("\n")

    # when confidence interval is "wilson", check for n < 10
    # to warn about incorrect Chi-squared approximation
    if (any(safety.04$denominator < 10) && method == "wilson" && confidence_interval) {

      cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")

    }

    return(safety.04)

  }

}

Try the nemsqar package in your browser

Any scripts or data that you put into this service are public.

nemsqar documentation built on Aug. 8, 2025, 6:15 p.m.