Nothing
#' @title Stroke-01 Calculation
#'
#' @description
#'
#' The `stroke_01` function processes EMS dataset to identify potential stroke
#' cases based on specific criteria and calculates the stroke scale measures. It
#' filters the data for 911 response calls, identifies stroke-related
#' impressions and scales, and aggregates results by unique patient encounters.
#'
#' @param df A data frame or tibble containing the dataset. Each row should
#' represent a unique patient encounter.
#' @param patient_scene_table A data frame or tibble containing only epatient
#' and escene fields as a fact table. Default is `NULL`.
#' @param response_table A data frame or tibble containing only the eresponse
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param situation_table A data.frame or tibble containing only the esituation
#' fields needed for this measure's calculations. Default is `NULL`.
#' @param vitals_table A data.frame or tibble containing only the evitals fields
#' needed for this measure's calculations. Default is `NULL`.
#' @param erecord_01_col The column containing unique record identifiers for
#' each encounter.
#' @param eresponse_05_col The column containing EMS response codes, which
#' should include 911 response codes.
#' @param esituation_11_col The column containing the primary impression codes
#' or descriptions related to the situation.
#' @param esituation_12_col The column containing secondary impression codes or
#' descriptions related to the situation.
#' @param evitals_23_col The column containing the Glasgow Coma Scale (GCS)
#' score.
#' @param evitals_26_col The column containing the AVPU (alert, verbal, pain,
#' unresponsive) scale value.
#' @param evitals_29_col The column containing the stroke scale score achieved
#' during assessment.
#' @param evitals_30_col The column containing stroke scale type descriptors
#' (e.g., FAST, NIH, etc.).
#' @param confidence_interval `r lifecycle::badge("experimental")` Logical. If
#' `TRUE`, the function calculates a confidence interval for the proportion
#' estimate.
#' @param method `r lifecycle::badge("experimental")`Character. Specifies the
#' method used to calculate confidence intervals. Options are `"wilson"`
#' (Wilson score interval) and `"clopper-pearson"` (exact binomial interval).
#' Partial matching is supported, so `"w"` and `"c"` can be used as shorthand.
#' @param conf.level `r lifecycle::badge("experimental")`Numeric. The confidence
#' level for the interval, expressed as a proportion (e.g., 0.95 for a 95%
#' confidence interval). Defaults to 0.95.
#' @param correct `r lifecycle::badge("experimental")`Logical. If `TRUE`,
#' applies a continuity correction to the Wilson score interval when `method =
#' "wilson"`. Defaults to `TRUE`.
#' @param ... optional additional arguments to pass onto `dplyr::summarize`.
#'
#' @return A data.frame summarizing results for two population groups (All,
#' Adults and Peds) with the following columns:
#' - `pop`: Population type (All, Adults, and Peds).
#' - `numerator`: Count of incidents meeting the measure.
#' - `denominator`: Total count of included incidents.
#' - `prop`: Proportion of incidents meeting the measure.
#' - `prop_label`: Proportion formatted as a percentage with a specified number
#' of decimal places.
#' - `lower_ci`: Lower bound of the confidence interval for `prop`
#' (if `confidence_interval = TRUE`).
#' - `upper_ci`: Upper bound of the confidence interval for `prop`
#' (if `confidence_interval = TRUE`).
#'
#' @examples
#'
#' # Synthetic test data
#' test_data <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' epatient_15 = c(34, 5, 45, 2, 60), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
#' eresponse_05 = rep(2205001, 5),
#' esituation_11 = c(rep("I60", 3), rep("I61", 2)),
#' esituation_12 = c(rep("I63", 2), rep("I64", 3)),
#' evitals_23 = c(16, 15, 14, 13, 12),
#' evitals_26 = c("Alert", "Painful", "Verbal", "Unresponsive", "Alert"),
#' evitals_29 = rep("positive", 5),
#' evitals_30 = rep("a pain scale", 5)
#' )
#'
#' # Run the function
#' # Return 95% confidence intervals using the Wilson method
#' stroke_01(
#' df = test_data,
#' erecord_01_col = erecord_01,
#' eresponse_05_col = eresponse_05,
#' esituation_11_col = esituation_11,
#' esituation_12_col = esituation_12,
#' evitals_23_col = evitals_23,
#' evitals_26_col = evitals_26,
#' evitals_29_col = evitals_29,
#' evitals_30_col = evitals_30,
#' confidence_interval = TRUE
#' )
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
stroke_01 <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
erecord_01_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
evitals_23_col,
evitals_26_col,
evitals_29_col,
evitals_30_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...) {
# Set default method and adjustment method
method <- match.arg(method, choices = c("wilson", "clopper-pearson"))
if (
any(
!is.null(patient_scene_table),
!is.null(vitals_table),
!is.null(situation_table),
!is.null(response_table)
) &&
is.null(df)
) {
# Start timing the function execution
start_time <- Sys.time()
# header
cli::cli_h1("Stroke-01")
# header
cli::cli_h2("Gathering Records for Stroke-01")
# gather the population of interest
stroke_01_populations <- stroke_01_population(patient_scene_table = patient_scene_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table,
erecord_01_col = {{ erecord_01_col }},
eresponse_05_col = {{ eresponse_05_col }},
esituation_11_col = {{ esituation_11_col }},
esituation_12_col = {{ esituation_12_col }},
evitals_23_col = {{ evitals_23_col }},
evitals_26_col = {{ evitals_26_col }},
evitals_29_col = {{ evitals_29_col }},
evitals_30_col = {{ evitals_30_col }}
)
# create a separator
cli::cli_text("\n")
# header for calculations
cli::cli_h2("Calculating Stroke-01")
# summarize
stroke.01 <- results_summarize(
total_population = stroke_01_populations$initial_population,
adult_population = NULL,
peds_population = NULL,
measure_name = "Stroke-01",
population_names = "all",
numerator_col = STROKE_SCALE,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# create a separator
cli::cli_text("\n")
# Calculate and display the runtime
end_time <- Sys.time()
run_time_secs <- difftime(end_time, start_time, units = "secs")
run_time_secs <- as.numeric(run_time_secs)
if (run_time_secs >= 60) {
run_time <- round(run_time_secs / 60, 2) # Convert to minutes and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")
} else {
run_time <- round(run_time_secs, 2) # Keep in seconds and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")
}
# create a separator
cli::cli_text("\n")
# when confidence interval is "wilson", check for n < 10
# to warn about incorrect Chi-squared approximation
if (any(stroke.01$denominator < 10) && method == "wilson" && confidence_interval) {
cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")
}
return(stroke.01)
} else if (
any(
is.null(patient_scene_table),
is.null(vitals_table),
is.null(situation_table),
is.null(response_table)
) &&
!is.null(df)
) {
# Start timing the function execution
start_time <- Sys.time()
# header
cli::cli_h1("Stroke-01")
# header
cli::cli_h2("Gathering Records for Stroke-01")
# gather the population of interest
stroke_01_populations <- stroke_01_population(df = df,
erecord_01_col = {{ erecord_01_col }},
eresponse_05_col = {{ eresponse_05_col }},
esituation_11_col = {{ esituation_11_col }},
esituation_12_col = {{ esituation_12_col }},
evitals_23_col = {{ evitals_23_col }},
evitals_26_col = {{ evitals_26_col }},
evitals_29_col = {{ evitals_29_col }},
evitals_30_col = {{ evitals_30_col }}
)
# create a separator
cli::cli_text("\n")
# header for calculations
cli::cli_h2("Calculating Stroke-01")
# summarize
stroke.01 <- results_summarize(
total_population = stroke_01_populations$initial_population,
adult_population = NULL,
peds_population = NULL,
measure_name = "Stroke-01",
population_names = "all",
numerator_col = STROKE_SCALE,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# create a separator
cli::cli_text("\n")
# Calculate and display the runtime
end_time <- Sys.time()
run_time_secs <- difftime(end_time, start_time, units = "secs")
run_time_secs <- as.numeric(run_time_secs)
if (run_time_secs >= 60) {
run_time <- round(run_time_secs / 60, 2) # Convert to minutes and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")
} else {
run_time <- round(run_time_secs, 2) # Keep in seconds and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")
}
# create a separator
cli::cli_text("\n")
# when confidence interval is "wilson", check for n < 10
# to warn about incorrect Chi-squared approximation
if (any(stroke.01$denominator < 10) && method == "wilson" && confidence_interval) {
cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")
}
return(stroke.01)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.