R/trauma_14.R

Defines functions trauma_14

Documented in trauma_14

#' @title Trauma-14 Calculation
#'
#' @description
#'
#' This function processes EMS data to generate a set of binary variables
#' indicating whether specific trauma triage criteria are met. The output #' is
#' a data frame enriched with these indicators for further analysis.  The final
#' outcome is whether or not the EMS record documents the use of #' a
#' pre-hospital trauma activation.
#'
#' @param df A data frame or tibble containing EMS data with all relevant
#'   columns.
#' @param patient_scene_table A data frame or tibble containing fields from
#'   epatient and escene needed for this measure's calculations.
#' @param situation_table A data frame or tibble containing fields from
#'   esituation needed for this measure's calculations.
#' @param response_table A data frame or tibble containing fields from eresponse
#'   needed for this measure's calculations.
#' @param disposition_table A data frame or tibble containing fields from
#'   edisposition needed for this measure's calculations.
#' @param vitals_table A data frame or tibble containing fields from evitals
#'   needed for this measure's calculations.
#' @param exam_table A data frame or tibble containing fields from eexam needed
#'   for this measure's calculations.
#' @param procedures_table A data frame or tibble containing fields from
#'   eprocedures needed for this measure's calculations.
#' @param injury_table A data frame or tibble containing fields from einjury
#'   needed for this measure's calculations.
#' @param erecord_01_col The column representing the EMS record unique
#'   identifier.
#' @param incident_date_col Column that contains the incident date. This
#'   defaults to `NULL` as it is optional in case not available due to PII
#'   restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#'   defaults to `NULL` as it is optional in case not available due to PII
#'   restrictions.
#' @param epatient_15_col The column for patient age numeric value.
#' @param epatient_16_col The column for patient age unit (e.g., "Years",
#'   "Months").
#' @param esituation_02_col The column containing information on the presence of
#'   injury.
#' @param eresponse_05_col The column representing the 911 response type.
#' @param eresponse_10_col Column name containing scene delay information.
#' @param transport_disposition_col The column for patient transport
#'   disposition.
#' @param edisposition_24_col Column name containing pre-hospital trauma alert
#'   information.
#' @param evitals_06_col Column name containing systolic blood pressure (SBP)
#'   values.
#' @param evitals_10_col Column name containing heart rate values.
#' @param evitals_12_col Column name containing pulse oximetry values.
#' @param evitals_14_col Column name containing capillary refill information.
#' @param evitals_15_col Column name containing respiratory effort values.
#' @param evitals_21_col Column name containing Glasgow Coma Scale (GCS) Motor
#'   values.
#' @param eexam_16_col Column name containing extremities assessment details.
#' @param eexam_20_col Column name containing neurological assessment details.
#' @param eexam_23_col Column name containing lung assessment details.
#' @param eexam_25_col Column name containing chest assessment details.
#' @param eprocedures_03_col Column name containing airway management or
#'   tourniquet usage details.
#' @param einjury_01_col Column name containing injury cause details.
#' @param einjury_03_col Column name containing trauma triage steps 1 and 2
#'   information.
#' @param einjury_04_col Column name containing trauma triage steps 3 and 4
#'   information.
#' @param einjury_09_col Column name containing fall height information.
#' @param confidence_interval `r lifecycle::badge("experimental")` Logical. If
#'   `TRUE`, the function calculates a confidence interval for the proportion
#'   estimate.
#' @param method `r lifecycle::badge("experimental")`Character. Specifies the
#'   method used to calculate confidence intervals. Options are `"wilson"`
#'   (Wilson score interval) and `"clopper-pearson"` (exact binomial interval).
#'   Partial matching is supported, so `"w"` and `"c"` can be used as shorthand.
#' @param conf.level `r lifecycle::badge("experimental")`Numeric. The confidence
#'   level for the interval, expressed as a proportion (e.g., 0.95 for a 95%
#'   confidence interval). Defaults to 0.95.
#' @param correct `r lifecycle::badge("experimental")`Logical. If `TRUE`,
#'   applies a continuity correction to the Wilson score interval when `method =
#'   "wilson"`. Defaults to `TRUE`.
#' @param ... optional additional arguments to pass onto `dplyr::summarize`.
#'
#' @return A data.frame summarizing results for two population groups (All,
#'   Adults and Peds) with the following columns:
#' - `pop`: Population type (All, Adults, and Peds).
#' - `numerator`: Count of incidents meeting the measure.
#' - `denominator`: Total count of included incidents.
#' - `prop`: Proportion of incidents meeting the measure.
#' - `prop_label`: Proportion formatted as a percentage with a specified number
#'    of decimal places.
#' - `lower_ci`: Lower bound of the confidence interval for `prop`
#'    (if `confidence_interval = TRUE`).
#' - `upper_ci`: Upper bound of the confidence interval for `prop`
#'    (if `confidence_interval = TRUE`).
#'
#' @examples
#'
#' # Synthetic test data
#'   test_data <- tibble::tibble(
#'     erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#'     epatient_15 = c(34, 5, 45, 2, 60),  # Ages
#'     epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
#'     eresponse_05 = rep(2205001, 5),
#'     eresponse_10 = rep(2210011, 5),
#'     esituation_02 = rep("Yes", 5),
#'     evitals_06 = c(100, 90, 80, 70, 85),
#'     evitals_10 = c(110, 89, 88, 71, 85),
#'     evitals_12 = c(50, 60, 70, 80, 75),
#'     evitals_14 = c(30, 9, 8, 7, 31),
#'     evitals_15 = c("apneic", "labored", "rapid", "shallow", "weak/agonal"),
#'     evitals_21 = c(5, 4, 3, 2, 1),
#'     eexam_16 = c(3516043, 3516067, 3516043, 3516067, 3516067),
#'     eexam_20 = c(3520045, 3520043, 3520019, 3520017, 3520017),
#'     eexam_23 = c(3523011, 3523003, 3523001, 3523011, 3523003),
#'     eexam_25 = c(3525039, 3525023, 3525005, 3525039, 3525023),
#'     edisposition_24 = c(4224017, 4224003, 4224017, 4224003, 4224017),
#'     edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007),
#'     eprocedures_03 = c(424979004, 427753009, 429705000, 47545007, 243142003),
#'     einjury_01 = c("V20", "V36", "V86", "V39", "V32"),
#'     einjury_03 = c(2903011, 2903009, 2903005, 3903003, 2903001),
#'     einjury_04 = c(2904013, 2904011, 2904009, 2904007, 2904001),
#'     einjury_09 = c(11, 12, 13, 14, 15)
#'   )
#'
#'   # Run function with the first and last pain score columns
#'   # Return 95% confidence intervals using the Wilson method
#'   trauma_14(
#'     df = test_data,
#'     erecord_01_col = erecord_01,
#'     epatient_15_col = epatient_15,
#'     epatient_16_col = epatient_16,
#'     eresponse_05_col = eresponse_05,
#'     eresponse_10_col = eresponse_10,
#'     esituation_02_col = esituation_02,
#'     evitals_06_col = evitals_06,
#'     evitals_10_col = evitals_10,
#'     evitals_12_col = evitals_12,
#'     evitals_14_col = evitals_14,
#'     evitals_15_col = evitals_15,
#'     evitals_21_col = evitals_21,
#'     eexam_16_col = eexam_16,
#'     eexam_20_col = eexam_20,
#'     eexam_23_col = eexam_23,
#'     eexam_25_col = eexam_25,
#'     edisposition_24_col = edisposition_24,
#'     transport_disposition_col = edisposition_30,
#'     eprocedures_03_col = eprocedures_03,
#'     einjury_01_col = einjury_01,
#'     einjury_03_col = einjury_03,
#'     einjury_04_col = einjury_04,
#'     einjury_09_col = einjury_09,
#'     confidence_interval = TRUE
#'   )
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
trauma_14 <- function(df = NULL,
                      patient_scene_table = NULL,
                      response_table = NULL,
                      situation_table = NULL,
                      vitals_table = NULL,
                      exam_table = NULL,
                      procedures_table = NULL,
                      injury_table = NULL,
                      disposition_table = NULL,
                      erecord_01_col,
                      incident_date_col = NULL,
                      patient_DOB_col = NULL,
                      epatient_15_col,
                      epatient_16_col,
                      esituation_02_col,
                      eresponse_05_col,
                      eresponse_10_col,
                      transport_disposition_col,
                      edisposition_24_col,
                      evitals_06_col,
                      evitals_10_col,
                      evitals_12_col,
                      evitals_14_col,
                      evitals_15_col,
                      evitals_21_col,
                      eexam_16_col,
                      eexam_20_col,
                      eexam_23_col,
                      eexam_25_col,
                      eprocedures_03_col,
                      einjury_01_col,
                      einjury_03_col,
                      einjury_04_col,
                      einjury_09_col,
                      confidence_interval = FALSE,
                      method = c("wilson", "clopper-pearson"),
                      conf.level = 0.95,
                      correct = TRUE,
                      ...) {

  # Set default method and adjustment method
  method <- match.arg(method, choices = c("wilson", "clopper-pearson"))

  # utilize applicable tables to analyze the data for the measure
  if(
    all(
      !is.null(patient_scene_table),
      !is.null(response_table),
      !is.null(situation_table),
      !is.null(vitals_table),
      !is.null(procedures_table),
      !is.null(exam_table),
      !is.null(injury_table),
      !is.null(disposition_table)
    ) && is.null(df)

  ) {

    # Start timing the function execution
    start_time <- Sys.time()

    # header
    cli::cli_h1("Trauma-14")

    # header
    cli::cli_h2("Gathering Records for Trauma-14")

    trauma_14_populations <- trauma_14_population(

      patient_scene_table = patient_scene_table,
      response_table = response_table,
      situation_table = situation_table,
      vitals_table = vitals_table,
      exam_table = exam_table,
      procedures_table = procedures_table,
      injury_table = injury_table,
      disposition_table = disposition_table,
      erecord_01_col = {{ erecord_01_col }},
      incident_date_col = {{ incident_date_col }},
      patient_DOB_col = {{ patient_DOB_col }},
      epatient_15_col = {{ epatient_15_col }},
      epatient_16_col = {{ epatient_16_col }},
      esituation_02_col = {{ esituation_02_col }},
      eresponse_05_col = {{ eresponse_05_col }},
      eresponse_10_col = {{ eresponse_10_col }},
      transport_disposition_col = {{ transport_disposition_col }},
      edisposition_24_col = {{ edisposition_24_col }},
      evitals_06_col = {{ evitals_06_col }},
      evitals_10_col = {{ evitals_10_col }},
      evitals_12_col = {{ evitals_12_col }},
      evitals_14_col = {{ evitals_14_col }},
      evitals_15_col = {{ evitals_15_col }},
      evitals_21_col = {{ evitals_21_col }},
      eexam_16_col = {{ eexam_16_col }},
      eexam_20_col = {{ eexam_20_col }},
      eexam_23_col = {{ eexam_23_col }},
      eexam_25_col = {{ eexam_25_col }},
      eprocedures_03_col = {{ eprocedures_03_col }},
      einjury_01_col = {{ einjury_01_col }},
      einjury_03_col = {{ einjury_03_col }},
      einjury_04_col = {{ einjury_04_col }},
      einjury_09_col = {{ einjury_09_col }}

    )

    # create a separator
    cli::cli_text("\n")

    # header for calculations
    cli::cli_h2("Calculating Trauma-14")

    # 65+ population
    population_65 <- trauma_14_populations$population_65 |>
      summarize_measure(
        measure_name = "Trauma-14",
        population_name = ">= 65 yrs",
        numerator_col = TRAUMA_ALERT_65,
        confidence_interval = confidence_interval,
        method = method,
        conf.level = conf.level,
        correct = correct,
        ...
      )

    # 10 to 64 population
    population_10_64 <- trauma_14_populations$population_10_64 |>
      summarize_measure(
        measure_name = "Trauma-14",
        population_name = "10-64 yrs",
        numerator_col = TRAUMA_ALERT_10_64,
        confidence_interval = confidence_interval,
        method = method,
        conf.level = conf.level,
        correct = correct,
        ...
      )

    # patients < 10 yrs
    population_10 <- trauma_14_populations$population_10 |>
      summarize_measure(
        measure_name = "Trauma-14",
        population_name = "< 10 yrs",
        numerator_col = TRAUMA_ALERT_10_64,
        confidence_interval = confidence_interval,
        method = method,
        conf.level = conf.level,
        correct = correct,
        ...
      )

    # summary
    trauma.14 <- dplyr::bind_rows(population_65, population_10_64, population_10)

    # create a separator
    cli::cli_text("\n")

    # Calculate and display the runtime
    end_time <- Sys.time()
    run_time_secs <- difftime(end_time, start_time, units = "secs")
    run_time_secs <- as.numeric(run_time_secs)

    if (run_time_secs >= 60) {

      run_time <- round(run_time_secs / 60, 2)  # Convert to minutes and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")

    } else {

      run_time <- round(run_time_secs, 2)  # Keep in seconds and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")

    }

    # create a separator
    cli::cli_text("\n")

    # when confidence interval is "wilson", check for n < 10
    # to warn about incorrect Chi-squared approximation
    if (any(trauma.14$denominator < 10) && method == "wilson" && confidence_interval) {

      cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")

    }

    return(trauma.14)

  } else if(

    all(
      is.null(patient_scene_table),
      is.null(response_table),
      is.null(situation_table),
      is.null(vitals_table),
      is.null(procedures_table),
      is.null(exam_table),
      is.null(injury_table),
      is.null(disposition_table)
    ) && !is.null(df)

  ) {

    # Start timing the function execution
    start_time <- Sys.time()

    # header
    cli::cli_h1("Trauma-14")

    # header
    cli::cli_h2("Gathering Records for Trauma-14")

    trauma_14_populations <- trauma_14_population(
      df = df,
      erecord_01_col = {{ erecord_01_col }},
      incident_date_col = {{ incident_date_col }},
      patient_DOB_col = {{ patient_DOB_col }},
      epatient_15_col = {{ epatient_15_col }},
      epatient_16_col = {{ epatient_16_col }},
      esituation_02_col = {{ esituation_02_col }},
      eresponse_05_col = {{ eresponse_05_col }},
      eresponse_10_col = {{ eresponse_10_col }},
      transport_disposition_col = {{ transport_disposition_col }},
      edisposition_24_col = {{ edisposition_24_col }},
      evitals_06_col = {{ evitals_06_col }},
      evitals_10_col = {{ evitals_10_col }},
      evitals_12_col = {{ evitals_12_col }},
      evitals_14_col = {{ evitals_14_col }},
      evitals_15_col = {{ evitals_15_col }},
      evitals_21_col = {{ evitals_21_col }},
      eexam_16_col = {{ eexam_16_col }},
      eexam_20_col = {{ eexam_20_col }},
      eexam_23_col = {{ eexam_23_col }},
      eexam_25_col = {{ eexam_25_col }},
      eprocedures_03_col = {{ eprocedures_03_col }},
      einjury_01_col = {{ einjury_01_col }},
      einjury_03_col = {{ einjury_03_col }},
      einjury_04_col = {{ einjury_04_col }},
      einjury_09_col = {{ einjury_09_col }}

    )

    # create a separator
    cli::cli_text("\n")

    # header for calculations
    cli::cli_h2("Calculating Trauma-14")

    # 65+ population
    population_65 <- trauma_14_populations$population_65 |>
      summarize_measure(
        measure_name = "Trauma-14",
        population_name = ">= 65 yrs",
        numerator_col = TRAUMA_ALERT_65,
        confidence_interval = confidence_interval,
        method = method,
        conf.level = conf.level,
        correct = correct,
        ...
      )

    # 10 to 64 population
    population_10_64 <- trauma_14_populations$population_10_64 |>
      summarize_measure(
        measure_name = "Trauma-14",
        population_name = "10-64 yrs",
        numerator_col = TRAUMA_ALERT_10_64,
        confidence_interval = confidence_interval,
        method = method,
        conf.level = conf.level,
        correct = correct,
        ...
      )

    # patients < 10 yrs
    population_10 <- trauma_14_populations$population_10 |>
      summarize_measure(
        measure_name = "Trauma-14",
        population_name = "< 10 yrs",
        numerator_col = TRAUMA_ALERT_10_64,
        confidence_interval = confidence_interval,
        method = method,
        conf.level = conf.level,
        correct = correct,
        ...
      )

    # summary
    trauma.14 <- dplyr::bind_rows(population_65, population_10_64, population_10)

    # create a separator
    cli::cli_text("\n")

    # Calculate and display the runtime
    end_time <- Sys.time()
    run_time_secs <- difftime(end_time, start_time, units = "secs")
    run_time_secs <- as.numeric(run_time_secs)

    if (run_time_secs >= 60) {

      run_time <- round(run_time_secs / 60, 2)  # Convert to minutes and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")

    } else {

      run_time <- round(run_time_secs, 2)  # Keep in seconds and round
      cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")

    }

    # create a separator
    cli::cli_text("\n")

    # when confidence interval is "wilson", check for n < 10
    # to warn about incorrect Chi-squared approximation
    if (any(trauma.14$denominator < 10) && method == "wilson" && confidence_interval) {

      cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")

    }

    return(trauma.14)

  }

}

Try the nemsqar package in your browser

Any scripts or data that you put into this service are public.

nemsqar documentation built on Aug. 8, 2025, 6:15 p.m.