Nothing
#' @title Trauma-14 Calculation
#'
#' @description
#'
#' This function processes EMS data to generate a set of binary variables
#' indicating whether specific trauma triage criteria are met. The output #' is
#' a data frame enriched with these indicators for further analysis. The final
#' outcome is whether or not the EMS record documents the use of #' a
#' pre-hospital trauma activation.
#'
#' @param df A data frame or tibble containing EMS data with all relevant
#' columns.
#' @param patient_scene_table A data frame or tibble containing fields from
#' epatient and escene needed for this measure's calculations.
#' @param situation_table A data frame or tibble containing fields from
#' esituation needed for this measure's calculations.
#' @param response_table A data frame or tibble containing fields from eresponse
#' needed for this measure's calculations.
#' @param disposition_table A data frame or tibble containing fields from
#' edisposition needed for this measure's calculations.
#' @param vitals_table A data frame or tibble containing fields from evitals
#' needed for this measure's calculations.
#' @param exam_table A data frame or tibble containing fields from eexam needed
#' for this measure's calculations.
#' @param procedures_table A data frame or tibble containing fields from
#' eprocedures needed for this measure's calculations.
#' @param injury_table A data frame or tibble containing fields from einjury
#' needed for this measure's calculations.
#' @param erecord_01_col The column representing the EMS record unique
#' identifier.
#' @param incident_date_col Column that contains the incident date. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param patient_DOB_col Column that contains the patient's date of birth. This
#' defaults to `NULL` as it is optional in case not available due to PII
#' restrictions.
#' @param epatient_15_col The column for patient age numeric value.
#' @param epatient_16_col The column for patient age unit (e.g., "Years",
#' "Months").
#' @param esituation_02_col The column containing information on the presence of
#' injury.
#' @param eresponse_05_col The column representing the 911 response type.
#' @param eresponse_10_col Column name containing scene delay information.
#' @param transport_disposition_col The column for patient transport
#' disposition.
#' @param edisposition_24_col Column name containing pre-hospital trauma alert
#' information.
#' @param evitals_06_col Column name containing systolic blood pressure (SBP)
#' values.
#' @param evitals_10_col Column name containing heart rate values.
#' @param evitals_12_col Column name containing pulse oximetry values.
#' @param evitals_14_col Column name containing capillary refill information.
#' @param evitals_15_col Column name containing respiratory effort values.
#' @param evitals_21_col Column name containing Glasgow Coma Scale (GCS) Motor
#' values.
#' @param eexam_16_col Column name containing extremities assessment details.
#' @param eexam_20_col Column name containing neurological assessment details.
#' @param eexam_23_col Column name containing lung assessment details.
#' @param eexam_25_col Column name containing chest assessment details.
#' @param eprocedures_03_col Column name containing airway management or
#' tourniquet usage details.
#' @param einjury_01_col Column name containing injury cause details.
#' @param einjury_03_col Column name containing trauma triage steps 1 and 2
#' information.
#' @param einjury_04_col Column name containing trauma triage steps 3 and 4
#' information.
#' @param einjury_09_col Column name containing fall height information.
#' @param confidence_interval `r lifecycle::badge("experimental")` Logical. If
#' `TRUE`, the function calculates a confidence interval for the proportion
#' estimate.
#' @param method `r lifecycle::badge("experimental")`Character. Specifies the
#' method used to calculate confidence intervals. Options are `"wilson"`
#' (Wilson score interval) and `"clopper-pearson"` (exact binomial interval).
#' Partial matching is supported, so `"w"` and `"c"` can be used as shorthand.
#' @param conf.level `r lifecycle::badge("experimental")`Numeric. The confidence
#' level for the interval, expressed as a proportion (e.g., 0.95 for a 95%
#' confidence interval). Defaults to 0.95.
#' @param correct `r lifecycle::badge("experimental")`Logical. If `TRUE`,
#' applies a continuity correction to the Wilson score interval when `method =
#' "wilson"`. Defaults to `TRUE`.
#' @param ... optional additional arguments to pass onto `dplyr::summarize`.
#'
#' @return A data.frame summarizing results for two population groups (All,
#' Adults and Peds) with the following columns:
#' - `pop`: Population type (All, Adults, and Peds).
#' - `numerator`: Count of incidents meeting the measure.
#' - `denominator`: Total count of included incidents.
#' - `prop`: Proportion of incidents meeting the measure.
#' - `prop_label`: Proportion formatted as a percentage with a specified number
#' of decimal places.
#' - `lower_ci`: Lower bound of the confidence interval for `prop`
#' (if `confidence_interval = TRUE`).
#' - `upper_ci`: Upper bound of the confidence interval for `prop`
#' (if `confidence_interval = TRUE`).
#'
#' @examples
#'
#' # Synthetic test data
#' test_data <- tibble::tibble(
#' erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
#' epatient_15 = c(34, 5, 45, 2, 60), # Ages
#' epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
#' eresponse_05 = rep(2205001, 5),
#' eresponse_10 = rep(2210011, 5),
#' esituation_02 = rep("Yes", 5),
#' evitals_06 = c(100, 90, 80, 70, 85),
#' evitals_10 = c(110, 89, 88, 71, 85),
#' evitals_12 = c(50, 60, 70, 80, 75),
#' evitals_14 = c(30, 9, 8, 7, 31),
#' evitals_15 = c("apneic", "labored", "rapid", "shallow", "weak/agonal"),
#' evitals_21 = c(5, 4, 3, 2, 1),
#' eexam_16 = c(3516043, 3516067, 3516043, 3516067, 3516067),
#' eexam_20 = c(3520045, 3520043, 3520019, 3520017, 3520017),
#' eexam_23 = c(3523011, 3523003, 3523001, 3523011, 3523003),
#' eexam_25 = c(3525039, 3525023, 3525005, 3525039, 3525023),
#' edisposition_24 = c(4224017, 4224003, 4224017, 4224003, 4224017),
#' edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007),
#' eprocedures_03 = c(424979004, 427753009, 429705000, 47545007, 243142003),
#' einjury_01 = c("V20", "V36", "V86", "V39", "V32"),
#' einjury_03 = c(2903011, 2903009, 2903005, 3903003, 2903001),
#' einjury_04 = c(2904013, 2904011, 2904009, 2904007, 2904001),
#' einjury_09 = c(11, 12, 13, 14, 15)
#' )
#'
#' # Run function with the first and last pain score columns
#' # Return 95% confidence intervals using the Wilson method
#' trauma_14(
#' df = test_data,
#' erecord_01_col = erecord_01,
#' epatient_15_col = epatient_15,
#' epatient_16_col = epatient_16,
#' eresponse_05_col = eresponse_05,
#' eresponse_10_col = eresponse_10,
#' esituation_02_col = esituation_02,
#' evitals_06_col = evitals_06,
#' evitals_10_col = evitals_10,
#' evitals_12_col = evitals_12,
#' evitals_14_col = evitals_14,
#' evitals_15_col = evitals_15,
#' evitals_21_col = evitals_21,
#' eexam_16_col = eexam_16,
#' eexam_20_col = eexam_20,
#' eexam_23_col = eexam_23,
#' eexam_25_col = eexam_25,
#' edisposition_24_col = edisposition_24,
#' transport_disposition_col = edisposition_30,
#' eprocedures_03_col = eprocedures_03,
#' einjury_01_col = einjury_01,
#' einjury_03_col = einjury_03,
#' einjury_04_col = einjury_04,
#' einjury_09_col = einjury_09,
#' confidence_interval = TRUE
#' )
#'
#' @author Nicolas Foss, Ed.D., MS
#'
#' @export
#'
trauma_14 <- function(df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
exam_table = NULL,
procedures_table = NULL,
injury_table = NULL,
disposition_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
esituation_02_col,
eresponse_05_col,
eresponse_10_col,
transport_disposition_col,
edisposition_24_col,
evitals_06_col,
evitals_10_col,
evitals_12_col,
evitals_14_col,
evitals_15_col,
evitals_21_col,
eexam_16_col,
eexam_20_col,
eexam_23_col,
eexam_25_col,
eprocedures_03_col,
einjury_01_col,
einjury_03_col,
einjury_04_col,
einjury_09_col,
confidence_interval = FALSE,
method = c("wilson", "clopper-pearson"),
conf.level = 0.95,
correct = TRUE,
...) {
# Set default method and adjustment method
method <- match.arg(method, choices = c("wilson", "clopper-pearson"))
# utilize applicable tables to analyze the data for the measure
if(
all(
!is.null(patient_scene_table),
!is.null(response_table),
!is.null(situation_table),
!is.null(vitals_table),
!is.null(procedures_table),
!is.null(exam_table),
!is.null(injury_table),
!is.null(disposition_table)
) && is.null(df)
) {
# Start timing the function execution
start_time <- Sys.time()
# header
cli::cli_h1("Trauma-14")
# header
cli::cli_h2("Gathering Records for Trauma-14")
trauma_14_populations <- trauma_14_population(
patient_scene_table = patient_scene_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table,
exam_table = exam_table,
procedures_table = procedures_table,
injury_table = injury_table,
disposition_table = disposition_table,
erecord_01_col = {{ erecord_01_col }},
incident_date_col = {{ incident_date_col }},
patient_DOB_col = {{ patient_DOB_col }},
epatient_15_col = {{ epatient_15_col }},
epatient_16_col = {{ epatient_16_col }},
esituation_02_col = {{ esituation_02_col }},
eresponse_05_col = {{ eresponse_05_col }},
eresponse_10_col = {{ eresponse_10_col }},
transport_disposition_col = {{ transport_disposition_col }},
edisposition_24_col = {{ edisposition_24_col }},
evitals_06_col = {{ evitals_06_col }},
evitals_10_col = {{ evitals_10_col }},
evitals_12_col = {{ evitals_12_col }},
evitals_14_col = {{ evitals_14_col }},
evitals_15_col = {{ evitals_15_col }},
evitals_21_col = {{ evitals_21_col }},
eexam_16_col = {{ eexam_16_col }},
eexam_20_col = {{ eexam_20_col }},
eexam_23_col = {{ eexam_23_col }},
eexam_25_col = {{ eexam_25_col }},
eprocedures_03_col = {{ eprocedures_03_col }},
einjury_01_col = {{ einjury_01_col }},
einjury_03_col = {{ einjury_03_col }},
einjury_04_col = {{ einjury_04_col }},
einjury_09_col = {{ einjury_09_col }}
)
# create a separator
cli::cli_text("\n")
# header for calculations
cli::cli_h2("Calculating Trauma-14")
# 65+ population
population_65 <- trauma_14_populations$population_65 |>
summarize_measure(
measure_name = "Trauma-14",
population_name = ">= 65 yrs",
numerator_col = TRAUMA_ALERT_65,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# 10 to 64 population
population_10_64 <- trauma_14_populations$population_10_64 |>
summarize_measure(
measure_name = "Trauma-14",
population_name = "10-64 yrs",
numerator_col = TRAUMA_ALERT_10_64,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# patients < 10 yrs
population_10 <- trauma_14_populations$population_10 |>
summarize_measure(
measure_name = "Trauma-14",
population_name = "< 10 yrs",
numerator_col = TRAUMA_ALERT_10_64,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# summary
trauma.14 <- dplyr::bind_rows(population_65, population_10_64, population_10)
# create a separator
cli::cli_text("\n")
# Calculate and display the runtime
end_time <- Sys.time()
run_time_secs <- difftime(end_time, start_time, units = "secs")
run_time_secs <- as.numeric(run_time_secs)
if (run_time_secs >= 60) {
run_time <- round(run_time_secs / 60, 2) # Convert to minutes and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")
} else {
run_time <- round(run_time_secs, 2) # Keep in seconds and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")
}
# create a separator
cli::cli_text("\n")
# when confidence interval is "wilson", check for n < 10
# to warn about incorrect Chi-squared approximation
if (any(trauma.14$denominator < 10) && method == "wilson" && confidence_interval) {
cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")
}
return(trauma.14)
} else if(
all(
is.null(patient_scene_table),
is.null(response_table),
is.null(situation_table),
is.null(vitals_table),
is.null(procedures_table),
is.null(exam_table),
is.null(injury_table),
is.null(disposition_table)
) && !is.null(df)
) {
# Start timing the function execution
start_time <- Sys.time()
# header
cli::cli_h1("Trauma-14")
# header
cli::cli_h2("Gathering Records for Trauma-14")
trauma_14_populations <- trauma_14_population(
df = df,
erecord_01_col = {{ erecord_01_col }},
incident_date_col = {{ incident_date_col }},
patient_DOB_col = {{ patient_DOB_col }},
epatient_15_col = {{ epatient_15_col }},
epatient_16_col = {{ epatient_16_col }},
esituation_02_col = {{ esituation_02_col }},
eresponse_05_col = {{ eresponse_05_col }},
eresponse_10_col = {{ eresponse_10_col }},
transport_disposition_col = {{ transport_disposition_col }},
edisposition_24_col = {{ edisposition_24_col }},
evitals_06_col = {{ evitals_06_col }},
evitals_10_col = {{ evitals_10_col }},
evitals_12_col = {{ evitals_12_col }},
evitals_14_col = {{ evitals_14_col }},
evitals_15_col = {{ evitals_15_col }},
evitals_21_col = {{ evitals_21_col }},
eexam_16_col = {{ eexam_16_col }},
eexam_20_col = {{ eexam_20_col }},
eexam_23_col = {{ eexam_23_col }},
eexam_25_col = {{ eexam_25_col }},
eprocedures_03_col = {{ eprocedures_03_col }},
einjury_01_col = {{ einjury_01_col }},
einjury_03_col = {{ einjury_03_col }},
einjury_04_col = {{ einjury_04_col }},
einjury_09_col = {{ einjury_09_col }}
)
# create a separator
cli::cli_text("\n")
# header for calculations
cli::cli_h2("Calculating Trauma-14")
# 65+ population
population_65 <- trauma_14_populations$population_65 |>
summarize_measure(
measure_name = "Trauma-14",
population_name = ">= 65 yrs",
numerator_col = TRAUMA_ALERT_65,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# 10 to 64 population
population_10_64 <- trauma_14_populations$population_10_64 |>
summarize_measure(
measure_name = "Trauma-14",
population_name = "10-64 yrs",
numerator_col = TRAUMA_ALERT_10_64,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# patients < 10 yrs
population_10 <- trauma_14_populations$population_10 |>
summarize_measure(
measure_name = "Trauma-14",
population_name = "< 10 yrs",
numerator_col = TRAUMA_ALERT_10_64,
confidence_interval = confidence_interval,
method = method,
conf.level = conf.level,
correct = correct,
...
)
# summary
trauma.14 <- dplyr::bind_rows(population_65, population_10_64, population_10)
# create a separator
cli::cli_text("\n")
# Calculate and display the runtime
end_time <- Sys.time()
run_time_secs <- difftime(end_time, start_time, units = "secs")
run_time_secs <- as.numeric(run_time_secs)
if (run_time_secs >= 60) {
run_time <- round(run_time_secs / 60, 2) # Convert to minutes and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 'm'))}.")
} else {
run_time <- round(run_time_secs, 2) # Keep in seconds and round
cli::cli_alert_success("Function completed in {cli::col_green(paste0(run_time, 's'))}.")
}
# create a separator
cli::cli_text("\n")
# when confidence interval is "wilson", check for n < 10
# to warn about incorrect Chi-squared approximation
if (any(trauma.14$denominator < 10) && method == "wilson" && confidence_interval) {
cli::cli_warn("In {.fn prop.test}: Chi-squared approximation may be incorrect for any n < 10.")
}
return(trauma.14)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.