msnburr | R Documentation |
To calculate density function, distribution funcion, quantile function, and build data from random generator function for the MSNBurr Distribution.
dmsnburr(x, mu = 0, sigma = 1, alpha = 1, log = FALSE)
pmsnburr(q, mu = 0, sigma = 1, alpha = 1, lower.tail = TRUE, log.p = FALSE)
qmsnburr(p, mu = 0, sigma = 1, alpha = 1, lower.tail = TRUE, log.p = FALSE)
rmsnburr(n, mu = 0, sigma = 1, alpha = 1)
x , q |
vector of quantiles. |
mu |
a location parameter. |
sigma |
a scale parameter. |
alpha |
a shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p) The default value of this parameter is FALSE. |
lower.tail |
logical;if TRUE (default), probabilities are
|
p |
vectors of probabilities. |
n |
number of observations. |
MSNBurr Distribution
The MSNBurr distribution with parameters \mu
, \sigma
,and \alpha
has density:
f(x |\mu,\sigma,\alpha)=\frac{\omega}{\sigma}\exp{\left(\omega{\left(\frac{x-\mu}{\sigma}\right)}\right)}{{\left(1+\frac{\exp{\left(\omega{(\frac{x-\mu}{\sigma})}\right)}}{\alpha}\right)}^{-(\alpha+1)}}
where -\infty < x < \infty, -\infty < \mu< \infty, \sigma>0, \alpha>0,
\omega = \frac{1}{\sqrt{2\pi}} {\left(1+\frac{1}{\alpha}\right)^{\alpha+1}}
dmsnburr
gives the density , pmsnburr
gives the distribution function,
qmsnburr
gives quantiles function, rmsnburr
generates random numbers.
Achmad Syahrul Choir and Nur Iriawan
Iriawan, N. (2000). Computationally Intensive Approaches to Inference in Neo-Normal Linear Models. Curtin University of Technology.
Choir, A. S. (2020). The New Neo-Normal Distributions and their Properties. Disertation. Institut Teknologi Sepuluh Nopember.
library("neodistr")
dmsnburr(0, mu=0, sigma=1, alpha=0.1)
plot(function(x) dmsnburr(x, alpha=0.1), -20, 3,
main = "Left Skew MSNBurr Density ",ylab="density")
pmsnburr(7, mu=0, sigma=1, alpha=1)
qmsnburr(0.6, mu=0, sigma=1, alpha=1)
r<- rmsnburr(10000, mu=0, sigma=1, alpha=1)
head(r)
hist(r, xlab = 'MSNBurr random number', ylab = 'Frequency',
main = 'Distribution of MSNBurr Random Number ')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.