stanf_fossep | R Documentation |
Stan code of fossep distribution for custom distribution in stan
stanf_fossep(vectorize = TRUE)
vectorize |
logical; if TRUE, Vectorize Stan code of Fernandez-Osiewalski-Steel Skew Exponential Power distribution are given The default value of this parameter is TRUE |
Fernandez-Osiewalski-Steel Skew Exponential Power Distribution has density:
f(y |\mu,\sigma,\alpha,\beta) = \frac{c}{\sigma} \exp \left( - \frac{1}{2} \left| v z \right|^\beta \right) \quad \text{if } y < \mu
f(y |\mu,\sigma,\alpha,\beta) = \frac{c}{\sigma} \exp \left( - \frac{1}{2} \left| \frac{v}{z} \right|^\beta \right) \quad \text{if } y \ge \mu
\text{where } -\infty < y < \infty, \ -\infty < \mu < \infty, \ \sigma > 0, \ \alpha > 0, \ \beta > 0
z = \frac{y - \mu}{\sigma}
c = v \beta \left[ (1 + v^2) 2^{\frac{1}{\beta}} \Gamma \left( \frac{1}{\beta} \right) \right]^{-1}
This function gives stan code of log density, cumulative distribution, log of cumulative distribution, log complementary cumulative distribution of Fernandez-Osiewalski-Steel Skew Exponential Power Distribution
fossep_lpdf
gives stan's code of the log of density, fossep_cdf
gives stan's code of the distribution
function, fossep_lcdf
gives stan's code of the log of distribution function and fossep_lccdf
gives the stans's code of complement of log distribution function (1-fossep_lcdf)
Almira Utami and Achmad Syahrul Choir
Fernandez, C., Osiewalski, J., & Steel, M. F. (1995) Modeling and inference with v-spherical distributions. Journal of the American Statistical Association, 90(432), pp 1331-1340
Rigby, R.A. and Stasinopoulos, M.D. and Heller, G.Z. and De Bastiani, F. (2019) Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R.CRC Press
## Not run:
library (neodistr)
library (rstan)
# inputting data
set.seed(400)
dt <- neodistr::rfossep(100,mu=0, sigma=1, alpha = 2, beta = 2) # random generating fossep data
dataf <- list(
n = 100,
y = dt
)
#### Vector
## Calling the function of the neonormal distribution that is available in the package.
func_code_vector<-paste(c("functions{",neodistr::stanf_fossep(vectorize=TRUE),"}"),collapse="\n")
# Define Stan Model Code
model_vector <-"
data{
int<lower=1> n;
vector[n] y;
}
parameters{
real mu;
real <lower=0> sigma;
real <lower=0> alpha;
real <lower=0>beta;
}
model {
y ~ fossep(rep_vector(mu,n),sigma, alpha, beta);
mu ~ cauchy (0,1);
sigma ~ cauchy (0, 1);
alpha ~ lognormal(0,2.5);
beta ~ lognormal(0,2.5);
}
"
# Merge stan model code and selected neo-normal stan function
fit_code_vector <- paste (c(func_code_vector,model_vector,"\n"), collapse = "\n")
# Create the model using Stan Function
fit2 <- stan(
model_code = fit_code_vector, # Stan Program
data = dataf, # named list data
chains = 2, # number of markov chains
warmup = 5000, # total number of warmup iterarions per chain
iter = 10000, # total number of iterations iterarions per chain
cores = 2, # number of cores (could use one per chain)
control = list( # control sampel behavior
adapt_delta = 0.99
),
refresh = 1000 # progress has shown if refresh >=1, else no progress shown
)
# Showing the estimation result of the parameters that were executed using the Stan file
print(fit2, pars = c("mu", "sigma", "alpha", "beta", "lp__"), probs=c(.025,.5,.975))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.