netcmc: Spatio-Network Generalised Linear Mixed Models for Areal Unit and Network Data

Implements a class of univariate and multivariate spatio-network generalised linear mixed models for areal unit and network data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian, or Poisson. Spatial autocorrelation is modelled by a set of random effects that are assigned a conditional autoregressive (CAR) prior distribution following the Leroux model (Leroux et al. (2000) <doi:10.1007/978-1-4612-1284-3_4>). Network structures are modelled by a set of random effects that reflect a multiple membership structure (Browne et al. (2001) <doi:10.1177/1471082X0100100202>).

Package details

AuthorGeorge Gerogiannis, Mark Tranmer, Duncan Lee
MaintainerGeorge Gerogiannis <g.gerogiannis.1@research.gla.ac.uk>
LicenseGPL (>= 2)
Version1.0.2
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("netcmc")

Try the netcmc package in your browser

Any scripts or data that you put into this service are public.

netcmc documentation built on Nov. 10, 2022, 5:11 p.m.