uni | R Documentation |
This function generates samples for a univariate fixed effects model, which is given by
Y_{i_s}|μ_{i_s} \sim f(y_{i_s}| μ_{i_s}, σ_{e}^{2}) ~~~ i=1,…, N_{s},~s=1,…,S ,
g(μ_{i_s}) = \boldsymbol{x}^\top_{i_s} \boldsymbol{β},
\boldsymbol{β} \sim \textrm{N}(\boldsymbol{0}, α\boldsymbol{I}),
σ_{e}^{2} \sim \textrm{Inverse-Gamma}(α_{3}, ξ_{3}).
The covariates for the ith individual in the sth spatial unit or other grouping are included in a p \times 1 vector \boldsymbol{x}_{i_s}. The corresponding p \times 1 vector of fixed effect parameters are denoted by \boldsymbol{β}, which has an assumed multivariate Gaussian prior with mean \boldsymbol{0} and diagonal covariance matrix α\boldsymbol{I} that can be chosen by the user. A conjugate Inverse-Gamma prior is specified for σ_{e}^{2}, and the corresponding hyperparamaterers (α_{3}, ξ_{3}) can be chosen by the user.
The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given below:
\textrm{Binomial:} ~ Y_{i_s} \sim \textrm{Binomial}(n_{i_s}, θ_{i_s}) ~ \textrm{and} ~ g(μ_{i_s}) = \textrm{ln}(θ_{i_s} / (1 - θ_{i_s})),
\textrm{Gaussian:} ~ Y_{i_s} \sim \textrm{N}(μ_{i_s}, σ_{e}^{2}) ~ \textrm{and} ~ g(μ_{i_s}) = μ_{i_s},
\textrm{Poisson:} ~ Y_{i_s} \sim \textrm{Poisson}(μ_{i_s}) ~ \textrm{and} ~ g(μ_{i_s}) = \textrm{ln}(μ_{i_s}).
uni(formula, data, trials, family, numberOfSamples = 10, burnin = 0, thin = 1, seed = 1, trueBeta = NULL, trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5, a3 = 0.001, b3 = 0.001)
formula |
A formula for the covariate part of the model using a similar syntax to that used in the lm() function. |
data |
An optional data.frame containing the variables in the formula. |
trials |
A vector the same length as the response containing the total number of trials n_{i_s}. Only used if \texttt{family}=“binomial". |
family |
The data likelihood model that must be “gaussian" , “poisson" or “binomial". |
numberOfSamples |
The number of samples to generate pre-thin. |
burnin |
The number of MCMC samples to discard as the burn-in period. |
thin |
The value by which to thin \texttt{numberOfSamples}. |
seed |
A seed for the MCMC algorithm. |
trueBeta |
If available, the true values of the \boldsymbol{β}. |
trueSigmaSquaredE |
If available, the true value of σ_{e}^{2}. Only used if \texttt{family}=“gaussian". |
covarianceBetaPrior |
A scalar prior α for the covariance parameter of the beta prior, such that the covariance is α\boldsymbol{I}. |
a3 |
The shape parameter for the Inverse-Gamma distribution α_{3}. Only used if \texttt{family}=“gaussian". |
b3 |
The scale parameter for the Inverse-Gamma distribution ξ_{3}. Only used if \texttt{family}=“gaussian". |
call |
The matched call. |
y |
The response used. |
X |
The design matrix used. |
standardizedX |
The standardized design matrix used. |
samples |
The matrix of simulated samples from the posterior distribution of each parameter in the model (excluding random effects). |
betaSamples |
The matrix of simulated samples from the posterior distribution of \boldsymbol{β} parameters in the model. |
sigmaSquaredESamples |
The vector of simulated samples from the posterior distribution of σ_{e}^{2} in the model. |
acceptanceRates |
The acceptance rates of parameters in the model from the MCMC sampling scheme. |
timeTaken |
The time taken for the model to run. |
burnin |
The number of MCMC samples to discard as the burn-in period. |
thin |
The value by which to thin \texttt{numberOfSamples}. |
DBar |
DBar for the model. |
posteriorDeviance |
The posterior deviance for the model. |
posteriorLogLikelihood |
The posterior log likelihood for the model. |
pd |
The number of effective parameters in the model. |
DIC |
The DIC for the model. |
George Gerogiannis
################################################# #### Run the model on simulated data ################################################# #### Generate the covariates and response data observations <- 100 X <- matrix(rnorm(2 * observations), ncol = 2) colnames(X) <- c("x1", "x2") beta <- c(2, -2, 2) logit <- cbind(rep(1, observations), X) %*% beta prob <- exp(logit) / (1 + exp(logit)) trials <- rep(50, observations) Y <- rbinom(n = observations, size = trials, prob = prob) data <- data.frame(cbind(Y, X)) #### Run the model formula <- Y ~ x1 + x2 ## Not run: model <- uni(formula = formula, data = data, family="binomial", trials = trials, numberOfSamples = 10000, burnin = 10000, thin = 10, seed = 1) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.