uniNetLeroux | R Documentation |
This function generates samples for a univariate network Leroux model, which is given by
Y_{i_s}|μ_{i_s} \sim f(y_{i_s}| μ_{i_s}, σ_{e}^{2}) ~~~ i=1,…, N_{s},~s=1,…,S ,
g(μ_{i_s}) = \boldsymbol{x}^\top_{i_s} \boldsymbol{β} + φ_{s} + ∑_{j\in \textrm{net}(i_s)}w_{i_sj}u_{j} + w^{*}_{i_s}u^{*},
\boldsymbol{β} \sim \textrm{N}(\boldsymbol{0}, α\boldsymbol{I}),
φ_{s} | \boldsymbol{φ}_{-s} \sim \textrm{N}\bigg(\frac{ ρ ∑_{l = 1}^{S} a_{sl} φ_{l} }{ ρ ∑_{l = 1}^{S} a_{sl} + 1 - ρ }, \frac{ τ^{2} }{ ρ ∑_{l = 1}^{S} a_{sl} + 1 - ρ } \bigg),
u_{j} \sim \textrm{N}(0, σ_{u}^{2}),
u^{*} \sim \textrm{N}(0, σ_{u}^{2}),
τ^{2} \sim \textrm{Inverse-Gamma}(α_{1}, ξ_{1}),
ρ \sim \textrm{Uniform}(0, 1),
σ_{u}^{2} \sim \textrm{Inverse-Gamma}(α_{2}, ξ_{2}),
σ_{e}^{2} \sim \textrm{Inverse-Gamma}(α_{3}, ξ_{3}).
The covariates for the ith individual in the sth spatial unit or other grouping are included in a p \times 1 vector \boldsymbol{x}_{i_s}. The corresponding p \times 1 vector of fixed effect parameters are denoted by \boldsymbol{β}, which has an assumed multivariate Gaussian prior with mean \boldsymbol{0} and diagonal covariance matrix α\boldsymbol{I} that can be chosen by the user. A conjugate Inverse-Gamma prior is specified for σ_{e}^{2}, and the corresponding hyperparamaterers (α_{3}, ξ_{3}) can be chosen by the user.
Spatial correlation in these areal unit level random effects is most often modelled by a conditional autoregressive (CAR) prior distribution. Using this model spatial correlation is induced into the random effects via a non-negative spatial adjacency matrix \boldsymbol{A} = (a_{sl})_{S \times S}, which defines how spatially close the S areal units are to each other. The elements of \boldsymbol{A}_{S \times S} can be binary or non-binary, and the most common specification is that a_{sl} = 1 if a pair of areal units (\mathcal{G}_{s}, \mathcal{G}_{l}) share a common border or are considered neighbours by some other measure, and a_{sl} = 0 otherwise. Note, a_{ss} = 0 for all s. \boldsymbol{φ}_{-s}=(φ_1,…,φ_{s-1}, φ_{s+1},…,φ_{S}). Here τ^{2} is a measure of the variance relating to the spatial random effects \boldsymbol{φ}, while ρ controls the level of spatial autocorrelation, with values close to one and zero representing strong autocorrelation and independence respectively. A non-conjugate uniform prior on the unit interval is specified for the single level of spatial autocorrelation ρ. In contrast, a conjugate Inverse-Gamma prior is specified for the random effects variance τ^{2}, and corresponding hyperparamaterers (α_{1}, ξ_{1}) can be chosen by the user.
The J \times 1 vector of alter random effects are denoted by \boldsymbol{u} = (u_{1}, …, u_{J})_{J \times 1} and modelled as independently Gaussian with mean zero and a constant variance, and due to the row standardised nature of \boldsymbol{W}, ∑_{j \in \textrm{net}(i_s)} w_{i_sj} u_{j} represents the average (mean) effect that the peers of individual i in spatial unit or group s have on that individual. w^{*}_{i_s}u^{*} is an isolation effect, which is an effect for individuals who don't nominate any friends. This is achieved by setting w^{*}_{i_s}=1 if individual i_s nominates no peers and w^{*}_{i_s}=0 otherwise, and if w^{*}_{i_s}=1 then clearly ∑_{j\in \textrm{net}(i_{s})}w_{i_{s}j}u_{jr}=0 as \textrm{net}(i_{s}) is the empty set. A conjugate Inverse-Gamma prior is specified for the random effects variance σ_{u}^{2}, and the corresponding hyperparamaterers (α_{2}, ξ_{2}) can be chosen by the user.
The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given below:
\textrm{Binomial:} ~ Y_{i_s} \sim \textrm{Binomial}(n_{i_s}, θ_{i_s}) ~ \textrm{and} ~ g(μ_{i_s}) = \textrm{ln}(θ_{i_s} / (1 - θ_{i_s})),
\textrm{Gaussian:} ~ Y_{i_s} \sim \textrm{N}(μ_{i_s}, σ_{e}^{2}) ~ \textrm{and} ~ g(μ_{i_s}) = μ_{i_s},
\textrm{Poisson:} ~ Y_{i_s} \sim \textrm{Poisson}(μ_{i_s}) ~ \textrm{and} ~ g(μ_{i_s}) = \textrm{ln}(μ_{i_s}).
uniNetLeroux(formula, data, trials, family, squareSpatialNeighbourhoodMatrix, spatialAssignment, W, numberOfSamples = 10, burnin = 0, thin = 1, seed = 1, trueBeta = NULL, trueSpatialRandomEffects = NULL, trueURandomEffects = NULL, trueSpatialTauSquared = NULL, trueSpatialRho = NULL, trueSigmaSquaredU = NULL, trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5, a1 = 0.001, b1 = 0.001, a2 = 0.001, b2 = 0.001, a3 = 0.001, b3 = 0.001, centerSpatialRandomEffects = TRUE, centerURandomEffects = TRUE)
formula |
A formula for the covariate part of the model using a similar syntax to that used in the lm() function. |
data |
An optional data.frame containing the variables in the formula. |
trials |
A vector the same length as the response containing the total number of trials n_{i_s}. Only used if \texttt{family}=“binomial". |
family |
The data likelihood model that must be “gaussian", “poisson" or “binomial". |
squareSpatialNeighbourhoodMatrix |
An S \times S symmetric and non-negative neighbourhood matrix \boldsymbol{A} = (a_{sl})_{S \times S}. |
W |
A matrix \boldsymbol{W} that encodes the social network structure and whose rows sum to 1. |
spatialAssignment |
The binary matrix of individual's assignment to spatial area used in the model fitting process. |
numberOfSamples |
The number of samples to generate pre-thin. |
burnin |
The number of MCMC samples to discard as the burn-in period. |
thin |
The value by which to thin \texttt{numberOfSamples}. |
seed |
A seed for the MCMC algorithm. |
trueBeta |
If available, the true value of \boldsymbol{β}. |
trueSpatialRandomEffects |
If available, the true value of \boldsymbol{φ}. |
trueURandomEffects |
If available, the true value of \boldsymbol{u}. |
trueSpatialTauSquared |
If available, the true value of τ^{2}. |
trueSpatialRho |
If available, the true value ofρ. |
trueSigmaSquaredU |
If available, the true value of σ_{u}^{2}. |
trueSigmaSquaredE |
If available, the true value of σ_{e}^{2}. |
covarianceBetaPrior |
A scalar prior α for the covariance parameter of the beta prior, such that the covariance is α\boldsymbol{I}. |
a1 |
The shape parameter for the Inverse-Gamma distribution relating to the spatial random effects α_{1}. |
b1 |
The scale parameter for the Inverse-Gamma distribution relating to the spatial random effects ξ_{1}. |
a2 |
The shape parameter for the Inverse-Gamma distribution relating to the network random effects α_{2}. |
b2 |
The scale parameter for the Inverse-Gamma distribution relating to the network random effects ξ_{2}. |
a3 |
The shape parameter for the Inverse-Gamma distribution relating to the error terms α_{3}. Only used if \texttt{family}=“gaussian". |
b3 |
The scale parameter for the Inverse-Gamma distribution relating to the error terms ξ_{3}. Only used if \texttt{family}=“gaussian". |
centerSpatialRandomEffects |
A choice to center the spatial random effects after each iteration of the MCMC sampler. |
centerURandomEffects |
A choice to center the network random effects after each iteration of the MCMC sampler. |
call |
The matched call. |
y |
The response used. |
X |
The design matrix used. |
standardizedX |
The standardized design matrix used. |
squareSpatialNeighbourhoodMatrix |
The spatial neighbourhood matrix used. |
spatialAssignment |
The spatial assignment matrix used. |
W |
The network matrix used. |
samples |
The matrix of simulated samples from the posterior distribution of each parameter in the model (excluding random effects). |
betaSamples |
The matrix of simulated samples from the posterior distribution of \boldsymbol{β} parameters in the model. |
spatialTauSquaredSamples |
The vector of simulated samples from the posterior distribution of τ^{2} in the model. |
spatialRhoSamples |
The vector of simulated samples from the posterior distribution of ρ in the model. |
sigmaSquaredUSamples |
The vector of simulated samples from the posterior distribution of σ_{u}^{2} in the model. |
sigmaSquaredESamples |
The vector of simulated samples from the posterior distribution of σ_{e}^{2} in the model. |
spatialRandomEffectsSamples |
The matrix of simulated samples from the posterior distribution of spatial/grouping random effects \boldsymbol{φ} in the model. |
uRandomEffectsSamples |
The matrix of simulated samples from the posterior distribution of network random effects \boldsymbol{u} in the model. |
acceptanceRates |
The acceptance rates of parameters in the model (excluding random effects) from the MCMC sampling scheme . |
spatialRandomEffectsAcceptanceRate |
The acceptance rates of spatial/grouping random effects in the model from the MCMC sampling scheme. |
uRandomEffectsAcceptanceRate |
The acceptance rates of network random effects in the model from the MCMC sampling scheme. |
timeTaken |
The time taken for the model to run. |
burnin |
The number of MCMC samples to discard as the burn-in period. |
thin |
The value by which to thin \texttt{numberOfSamples}. |
DBar |
DBar for the model. |
posteriorDeviance |
The posterior deviance for the model. |
posteriorLogLikelihood |
The posterior log likelihood for the model. |
pd |
The number of effective parameters in the model. |
DIC |
The DIC for the model. |
George Gerogiannis
################################################# #### Run the model on simulated data ################################################# #### Load other libraries required library(MCMCpack) #### Set up a network observations <- 200 numberOfMultipleClassifications <- 50 W <- matrix(rbinom(observations * numberOfMultipleClassifications, 1, 0.05), ncol = numberOfMultipleClassifications) numberOfActorsWithNoPeers <- sum(apply(W, 1, function(x) { sum(x) == 0 })) peers <- sample(1:numberOfMultipleClassifications, numberOfActorsWithNoPeers, TRUE) actorsWithNoPeers <- which(apply(W, 1, function(x) { sum(x) == 0 })) for(i in 1:numberOfActorsWithNoPeers) { W[actorsWithNoPeers[i], peers[i]] <- 1 } W <- t(apply(W, 1, function(x) { x / sum(x) })) #### Set up a spatial structure numberOfSpatialAreas <- 100 factor = sample(1:numberOfSpatialAreas, observations, TRUE) spatialAssignment = matrix(NA, ncol = numberOfSpatialAreas, nrow = observations) for(i in 1:length(factor)){ for(j in 1:numberOfSpatialAreas){ if(factor[i] == j){ spatialAssignment[i, j] = 1 } else { spatialAssignment[i, j] = 0 } } } gridAxis = sqrt(numberOfSpatialAreas) easting = 1:gridAxis northing = 1:gridAxis grid = expand.grid(easting, northing) numberOfRowsInGrid = nrow(grid) distance = as.matrix(dist(grid)) squareSpatialNeighbourhoodMatrix = array(0, c(numberOfRowsInGrid, numberOfRowsInGrid)) squareSpatialNeighbourhoodMatrix[distance==1] = 1 #### Generate the covariates and response data X <- matrix(rnorm(2 * observations), ncol = 2) colnames(X) <- c("x1", "x2") beta <- c(2, -2, 2) spatialRho <- 0.5 spatialTauSquared <- 2 spatialPrecisionMatrix = spatialRho * (diag(apply(squareSpatialNeighbourhoodMatrix, 1, sum)) - squareSpatialNeighbourhoodMatrix) + (1 - spatialRho) * diag(rep(1, numberOfSpatialAreas)) spatialCovarianceMatrix = solve(spatialPrecisionMatrix) spatialPhi = mvrnorm(n = 1, mu = rep(0, numberOfSpatialAreas), Sigma = (spatialTauSquared * spatialCovarianceMatrix)) sigmaSquaredU <- 2 uRandomEffects <- rnorm(numberOfMultipleClassifications, mean = 0, sd = sqrt(sigmaSquaredU)) logit <- cbind(rep(1, observations), X) %*% beta + spatialAssignment %*% spatialPhi + W %*% uRandomEffects prob <- exp(logit) / (1 + exp(logit)) trials <- rep(50, observations) Y <- rbinom(n = observations, size = trials, prob = prob) data <- data.frame(cbind(Y, X)) #### Run the model formula <- Y ~ x1 + x2 ## Not run: model <- uniNetLeroux(formula = formula, data = data, family="binomial", W = W, spatialAssignment = spatialAssignment, squareSpatialNeighbourhoodMatrix = squareSpatialNeighbourhoodMatrix, trials = trials, numberOfSamples = 10000, burnin = 10000, thin = 10, seed = 1) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.