View source: R/threshold.graph.R
threshold_graph | R Documentation |
Constructs a random threshold graph. A threshold graph is a graph where the neighborhood inclusion preorder is complete.
threshold_graph(n, p, bseq)
n |
The number of vertices in the graph. |
p |
The probability of inserting dominating vertices. Equates approximately to the density of the graph. See Details. |
bseq |
(0,1)-vector a binary sequence that produces a threshold grah. See details |
Either n
and p
, or bseq
must be specified.
Threshold graphs can be constructed with a binary sequence. For each 0, an isolated
vertex is inserted and for each 1, a vertex is inserted that connects to all previously inserted
vertices. The probability of inserting a dominating vertices is controlled with parameter p
.
If bseq
is given instead, a threshold graph is constructed from that sequence.
An important property of threshold graphs is, that all centrality indices induce the same ranking.
A threshold graph as igraph object
David Schoch
Mahadev, N. and Peled, U. N. , 1995. Threshold graphs and related topics.
Schoch, D., Valente, T. W. and Brandes, U., 2017. Correlations among centrality indices and a class of uniquely ranked graphs. Social Networks 50, 46–54.
neighborhood_inclusion, positional_dominance
library(igraph)
g <- threshold_graph(10, 0.3)
## Not run:
plot(g)
# star graphs and complete graphs are threshold graphs
complete <- threshold_graph(10, 1) # complete graph
plot(complete)
star <- threshold_graph(10, 0) # star graph
plot(star)
## End(Not run)
# centrality scores are perfectly rank correlated
cor(degree(g), closeness(g), method = "kendall")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.