Nothing
library(testthat)
library(reticulate)
skip_if_no_keras <- function() {
if (!tryCatch(
reticulate::py_module_available("keras"),
error = function(e) return(FALSE)
)
) skip("keras not available for testing...")
}
# Test case 1: Check the weights for gaussian family
test_that("Weights for gaussian family should be equal to input weights", {
skip_if_no_keras()
family <- "gaussian"
muhat <- c(0.1, 0.5, 0.9)
w <- c(0.2, 0.6, 0.8)
expected_output <- w
actual_output <- weight(w, muhat, family)
expect_equal(actual_output, expected_output)
})
# Test case 2: Check the weights for binomial family
test_that("Weights for binomial family should be correctly calculated", {
skip_if_no_keras()
family <- "binomial"
muhat <- c(0.2, 0.7, 0.99)
w <- c(0.2, 0.6, 0.8)
# Calculate the expected weights
diriv_values <- diriv(family, muhat)
aux <- muhat * (1 - muhat) * (diriv_values^2)
aux[aux <= 0.001] <- 0.001
expected_output <- w / aux
actual_output <- weight(w, muhat, family)
expect_equal(actual_output, expected_output)
})
# Test case 3: Check for missing 'muhat' argument
test_that("Function should throw an error for missing 'muhat' argument", {
skip_if_no_keras()
family <- "gaussian"
w <- c(0.2, 0.6, 0.8)
expect_error(weight(w, family))
})
# Test case 4: Check for missing 'w' argument
test_that("Function should throw an error for missing 'w' argument", {
skip_if_no_keras()
family <- "gaussian"
muhat <- c(0.1, 0.5, 0.9)
expect_error(weight(muhat, family))
})
# Test case 5: Check for missing 'family' argument
test_that("Function should throw an error for missing 'family' argument", {
skip_if_no_keras()
muhat <- c(0.1, 0.5, 0.9)
w <- c(0.2, 0.6, 0.8)
expect_error(weight(w, muhat))
})
# Test case 6: Check for unsupported family
test_that("Function should throw an error for unsupported 'family'", {
skip_if_no_keras()
family <- "poisson"
muhat <- c(0.1, 0.5, 0.9)
w <- c(0.2, 0.6, 0.8)
expect_error(weight(w, muhat, family))
})
# Test case 7: Check that weights calculation handles extreme muhat values for binomial family
test_that("Weights calculation should handle extreme muhat values for binomial family", {
skip_if_no_keras()
family <- "binomial"
muhat <- c(0.0001, 0.9999)
w <- c(0.2, 0.6)
# Calculate the expected weights
muhat[muhat <= 0.001] <- 0.001
muhat[muhat >= 0.999] <- 0.999
diriv_values <- neuralGAM:::diriv(family, muhat)
aux <- muhat * (1 - muhat) * (diriv_values**2)
aux[aux <= 0.001] <- 0.001
expected_output <- w / aux
actual_output <- neuralGAM:::weight(w, muhat, family)
expect_equal(actual_output, expected_output)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.