pca | R Documentation |
Computes a principal components analysis based on the singular value decomposition.
## S4 method for signature 'CompositionMatrix'
pca(
object,
center = TRUE,
scale = FALSE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
weight_row = NULL,
weight_col = NULL
)
## S4 method for signature 'LogRatio'
pca(
object,
center = TRUE,
scale = FALSE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
weight_row = NULL,
weight_col = NULL
)
object |
A |
center |
A |
scale |
A |
rank |
An |
sup_row |
A |
sup_col |
A |
weight_row |
A |
weight_col |
A |
A dimensio::PCA
object. See dimensio::pca()
for details.
pca(CompositionMatrix)
: PCA of centered log-ratio, i.e. log-ratio analysis (LRA).
N. Frerebeau
Aitchison, J. and Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51: 375-392. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/1467-9876.00275")}.
Filzmoser, P., Hron, K. and Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20: 621-632. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/env.966")}.
dimensio::pca()
, dimensio::biplot()
, dimensio::screeplot()
,
dimensio::viz_individuals()
, dimensio::viz_variables()
## Data from Day et al. 2011
data("kommos", package = "folio") # Coerce to compositional data
kommos <- remove_NA(kommos, margin = 1) # Remove cases with missing values
coda <- as_composition(kommos, groups = 1) # Use ceramic types for grouping
## Log-Ratio Analysis
X <- pca(coda)
## Biplot
biplot(X)
## Explore results
viz_individuals(X)
viz_variables(X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.