| pip | R Documentation |
Computes an index of association between parts.
pip(x, ...)
## S4 method for signature 'CompositionMatrix'
pip(x)
x |
A |
... |
Currently not used. |
The proportionality index of parts (PIP) is based on the
variation matrix, but maintains the range of values whithin
(0,1).
A matrix.
N. Frerebeau
Egozcue, J. J.. & Pawlowsky-Glahn, V. (2023). Subcompositional Coherence and and a Novel Proportionality Index of Parts. SORT, 47(2): 229-244. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.57645/20.8080.02.7")}.
Other statistics:
aggregate(),
condense(),
covariance(),
dist,
mahalanobis(),
margin(),
mean(),
quantile(),
scale(),
variance(),
variance_total(),
variation()
## Data from Aitchison 1986
data("hongite")
## Coerce to compositional data
coda <- as_composition(hongite)
## Variation matrix
## (Aitchison 1986, definition 4.4)
(varia <- variation(coda))
## Cluster dendrogram
d <- as.dist(varia)
h <- hclust(d, method = "ward.D2")
plot(h)
## Heatmap
stats::heatmap(
varia,
distfun = stats::as.dist,
hclustfun = function(x) stats::hclust(x, method = "ward.D2"),
symm = TRUE,
scale = "none"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.