Nothing
#' Bernoulli point process for the distribution of activity centers
#'
#' Density and random generation functions of the Bernoulli point process for the distribution of activity centers.
#'
#' The \code{dbernppAC} distribution is a NIMBLE custom distribution which can be used to model and simulate
#' the activity center location (\emph{x}) of a single individual in continuous space over a set of habitat windows defined by their upper and lower
#' coordinates (\emph{lowerCoords,upperCoords}). The distribution assumes that the activity center
#' follows a Bernoulli point process with intensity = \emph{exp(logIntensities)}.
#'
#'
#' @name dbernppAC
#'
#' @param x Vector of x- and y-coordinates of a single spatial point (i.e. AC location) scaled to the habitat (see (\code{\link{scaleCoordsToHabitatGrid}}).
#' @param n Integer specifying the number of realisations to generate. Only n = 1 is supported.
#' @param lowerCoords,upperCoords Matrices of lower and upper x- and y-coordinates of all habitat windows scaled to the habitat (see (\code{\link{scaleCoordsToHabitatGrid}}). One row for each window.
#' Each window should be of size 1x1.
#' @param logIntensities Vector of log habitat intensities for all habitat windows.
#' @param logSumIntensity Log of the sum of habitat intensities over all windows.
#' @param habitatGrid Matrix of habitat window indices. Cell values should correspond to the order of habitat windows in
#' \code{lowerCoords}, \code{upperCoords}, and \code{logIntensities}.
#' When the habitat grid only consists of a single row or column of windows, an additional row or column of dummy indices has to be added because the \code{nimble} model code requires a matrix.
#' @param numGridRows,numGridCols Numbers of rows and columns of the habitat grid.
#' @param log Logical argument, specifying whether to return the log-probability of the distribution.
#'
#' @return
#' \code{dbernppAC} gives the (log) probability density of the observation vector \code{x}.
#' \code{rbernppAC} gives coordinates of a randomly generated spatial point.
#'
#' @author Wei Zhang
#'
#'
#' @references
#'
#' W. Zhang, J. D. Chipperfield, J. B. Illian, P. Dupont, C. Milleret, P. de Valpine and R. Bischof. 2020.
#' A hierarchical point process model for spatial capture-recapture data. bioRxiv. DOI 10.1101/2020.10.06.325035
#'
#' @examples
#' # Use the distribution in R
#' lowerCoords <- matrix(c(0, 0, 1, 0, 0, 1, 1, 1), nrow = 4, byrow = TRUE)
#' upperCoords <- matrix(c(1, 1, 2, 1, 1, 2, 2, 2), nrow = 4, byrow = TRUE)
#' logIntensities <- log(c(1:4))
#' logSumIntensity <- log(sum(c(1:4)))
#' habitatGrid <- matrix(c(1:4), nrow = 2, byrow = TRUE)
#' numGridRows <- nrow(habitatGrid)
#' numGridCols <- ncol(habitatGrid)
#' dbernppAC(c(0.5, 1.5), lowerCoords, upperCoords, logIntensities, logSumIntensity,
#' habitatGrid, numGridRows, numGridCols, log = TRUE)
NULL
#' @rdname dbernppAC
#' @export
dbernppAC <- nimbleFunction(
run = function(
x = double(1),
lowerCoords = double(2),
upperCoords = double(2),
logIntensities = double(1),
logSumIntensity = double(0),
habitatGrid = double(2),
numGridRows = integer(0),
numGridCols = integer(0),
log = integer(0, default = 0)
) {
## Check if the point falls within the habitat:
## Getting numGridRows and numGridCols using the following code takes some time
## and may cause inefficiency if the function is called repeatedly in a loop.
## numGridRows <- dim(habitatGrid)[1]
## numGridCols <- dim(habitatGrid)[2]
## In addition, when the true habitat grid has one row/column we need to inflate it for use in NIMBLE model code.
## In this case, we have problems using the code above.
## Note that we need to rescale the habitat gird to ensure x and y coordinates start from 0
## and each window is of size 1x1. So the following code works correctly.
if(min(x) < 0 | x[2] >= numGridRows | x[1] >= numGridCols) {
if(log) return(-Inf)
else return(0.0)
}
## Find which window point x falls within
windowInd <- habitatGrid[trunc(x[2])+1, trunc(x[1])+1]
## windowInd == 0 means this window is not defined as habitat
if(windowInd == 0) {
if(log) return(-Inf)
else return(0.0)
}
## Log probability density
logProb <- logIntensities[windowInd] - logSumIntensity
if(log) return(logProb)
else return(exp(logProb))
returnType(double(0))
}
)
NULL
#' @rdname dbernppAC
#' @export
rbernppAC <- nimbleFunction(
run = function(
n = integer(0),
lowerCoords = double(2),
upperCoords = double(2),
logIntensities = double(1),
logSumIntensity = double(0),
habitatGrid = double(2),
numGridRows = integer(0),
numGridCols = integer(0)
) {
if(n <= 0) stop("The number of requested samples must be above zero")
else if(n > 1) print("rbernppAC only allows n = 1; using n = 1")
## Simulate window index
windowInd <- rcat(1, exp(logIntensities))
numDims <- 2
## A uniform distribution is used within the target window
outCoordinates <- lowerCoords[windowInd,] +
runif(numDims, 0.0, 1.0) * (upperCoords[windowInd,] - lowerCoords[windowInd,])
return(outCoordinates)
returnType(double(1))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.