Nothing
context("Checking meta-analysis example: TB dataset")
test_that("results are correct for the data preparation (pairiwise meta-analysis) function.", {
skip_on_cran()
### load TB dataset
data(TBdat, package="nmaINLA")
### Create the dataset suitable for INLA
TBdatINLA <- create_INLA_dat_pair(TBdat$TRT, TBdat$CON, TBdat$TRTTB, TBdat$CONTB)
### compare with results
expect_equivalent(round(TBdatINLA$data.cont$Y[3], 3), -1.386)
expect_equivalent(TBdatINLA$data.arm$Y[3], 29)
})
## Fitting a pairwise random effects meta-analysis model
test_that("results are correct for fitting (pairiwise meta-analysis) function.", {
skip_on_cran()
data(TBdat, package="nmaINLA")
### Create the dataset suitable for INLA
TBdatINLA <- create_INLA_dat_pair(TBdat$TRT, TBdat$CON, TBdat$TRTTB, TBdat$CONTB)
if(requireNamespace('INLA', quietly = TRUE)){
require('INLA', quietly = TRUE)
fit.TB.RE.INLA <- meta_inla(TBdatINLA, type = 'RE',
approach = 'arm-level',
tau.prior = 'uniform', tau.par = c(0, 5))
}
### compare with results
expect_equivalent(round(fit.TB.RE.INLA$nu[1], 2), -0.76)
expect_equivalent(round(fit.TB.RE.INLA$nu[2], 2), 0.21)
})
context("Checking a NMA example: Smoking dataset")
### Create the dataset suitable for INLA
test_that("results are correct for the data preparation (network meta-analysis) function.", {
skip_on_cran()
### load TB dataset
data("Smokdat", package="nmaINLA")
SmokdatINLA <- create_INLA_dat(dat = Smokdat,
armVars = c('treatment' = 't', 'responders' = 'r',
'sampleSize' = 'n'),
nArmsVar = 'na')
### compare with results
expect_equivalent(SmokdatINLA$responders[1:3], c(9, 23, 10))
expect_equivalent(SmokdatINLA$baseline[47:50], c(3, 3, 3, 3))
})
test_that("results are correct for fitting (network meta-analysis) function.", {
skip_on_cran()
SmokdatINLA <- create_INLA_dat(dat = Smokdat,
armVars = c('treatment' = 't', 'responders' = 'r',
'sampleSize' = 'n'),
nArmsVar = 'na')
## Fitting a pairwise random effects meta-analysis model
if(requireNamespace('INLA', quietly = TRUE)){
require('INLA', quietly = TRUE)
fit.Smok.cons.INLA <- nma_inla(SmokdatINLA, likelihood = 'binomial', type = 'consistency',
tau.prior = 'uniform', tau.par = c(0, 5))
}
### compare with results
expect_equivalent(round(fit.Smok.cons.INLA$d_params[, 1], 2), c(0.49, 0.84, 1.10))
expect_equivalent(round(fit.Smok.cons.INLA$hyperpar[1], 2), 0.84)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.