Nothing
test_that("The function works over an already trained network and the connstraints
are fulfiled after training for the constrained network", {
skip_if_not_installed("keras")
skip_if_not_installed("tensorflow")
skip_on_cran()
testing_data <- testing_helper_2()
nn <- keras_test_model()
# compile the model
keras::compile(nn,
loss = "mse",
optimizer = keras::optimizer_adam(),
metrics = "mse")
constrained_nn <- add_constraints(nn, constraint_type = "l1_norm")
# train the non-constrained model
fit(nn,
x = testing_data$train_x,
y = testing_data$train_y,
verbose = 0,
epochs = 3,
validation_split = 0.2
)
# train the constrained model
fit(constrained_nn,
testing_data$train_x,
testing_data$train_y,
verbose = 0,
epochs = 3,
validation_split = 0.2
)
constrained_nn_parameters <- get_parameters(constrained_nn)
constrained_nn_weights <- constrained_nn_parameters$weights_list
# compute the l1-norm for all the weight matrices
weights_l1_norm <- check_weight_constraints(constrained_nn_weights,
maxnorm = list("l1_norm"))
# check if the condition is fulfilled for every matrix
expect_true(
all(
sapply(weights_l1_norm[1:length(weights_l1_norm) - 1], # skip the output layer
function(l1_norm) all(l1_norm < 1))
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.