Nothing
source("_code_for_all_.R")
# unit-level data ---------------------------------------------------------
### ipw mle ---------------------------------------------------------------------
ipw_mle <- nonprob(
selection = ~x1 + x2,
target = ~y1 + y2,
svydesign = kim2019_sample_prob,
data = kim2019_sample_nonprob,
method_selection = "logit")
expect_equal(
ipw_mle$confidence_interval$lower_bound < kim2019_y_true &
ipw_mle$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
expect_equal(
ipw_mle$output$mean,
c(3.01644580705596, 1.63078036928783)
)
expect_equal(
ipw_mle$output$SE,
c(0.0524674811724362, 0.0524674811724362)
)
### ipw gee ---------------------------------------------------------------------
ipw_gee <- nonprob(
selection = ~x1 + x2,
target = ~y1 + y2,
svydesign = kim2019_sample_prob,
data = kim2019_sample_nonprob,
method_selection = "logit",
control_selection = control_sel(est_method = "gee"))
expect_equal(
ipw_gee$confidence_interval$lower_bound < kim2019_y_true &
ipw_gee$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
expect_equal(
ipw_gee$output$mean,
c(2.99726031732032, 1.62129373905383)
)
expect_equal(
ipw_gee$output$SE,
c(0.0498758624332513, 0.0498758624332513)
)
ipw_gee_h <- nonprob(
selection = ~x1 + x2,
target = ~y1 + y2,
svydesign = kim2019_sample_prob,
data = kim2019_sample_nonprob,
method_selection = "logit",
control_selection = control_sel(est_method = "gee", gee_h_fun = 2,
nleqslv_method = "Newton"))
expect_equal(
ipw_gee_h$confidence_interval$lower_bound < kim2019_y_true &
ipw_gee_h$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
expect_equal(
ipw_gee_h$output$mean,
c(3.01644580669817, 1.63078036903502)
)
expect_equal(
ipw_gee_h$output$SE,
c(0.0524674811523142, 0.0524674811523142)
)
### mi glm
mi_glm <- nonprob(outcome = y1 + y2~x1 + x2,
svydesign = kim2019_sample_prob,
method_outcome = "glm",
data = kim2019_sample_nonprob)
expect_equal(
mi_glm$confidence_interval$lower_bound < kim2019_y_true &
mi_glm$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
expect_equal(
mi_glm$output$mean,
c(2.99691596891578, 1.62091690224175)
)
expect_equal(
mi_glm$output$SE,
c(0.0623219374193106, 0.0495262154516198)
)
### mi nn
mi_nn <- nonprob(outcome = y1 + y2~x1 + x2,
svydesign = kim2019_sample_prob,
method_outcome = "nn",
data = kim2019_sample_nonprob)
expect_equal(
mi_nn$confidence_interval$lower_bound < kim2019_y_true &
mi_nn$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
expect_equal(
mi_nn$output$mean,
c(2.9975501665046, 1.58200852515197)
)
expect_equal(
mi_nn$output$SE,
c(0.0655674273365258, 0.0622025880888819)
)
### mi pmm
mi_pmm <- nonprob(outcome = y1 + y2~x1 + x2,
svydesign = kim2019_sample_prob,
method_outcome = "pmm",
data = kim2019_sample_nonprob,
control_inference = control_inf(num_boot = 5))
expect_equal(
mi_pmm$confidence_interval$lower_bound < kim2019_y_true &
mi_pmm$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
expect_equal(
mi_pmm$output$mean,
c(2.99871375079429, 1.63414822522373)
)
expect_equal(
mi_pmm$output$SE,
c(0.0365318428337102, 0.0618009882119864)
)
### mi npar
# mi_npar <- nonprob(outcome = y1 + y2 ~ x1 + x2,
# svydesign = kim2019_sample_prob,
# method_outcome = "npar",
# data = kim2019_sample_nonprob)
#
# expect_equal(
# mi_npar$confidence_interval$lower_bound < kim2019_y_true &
# mi_npar$confidence_interval$upper_bound > kim2019_y_true,
# c(TRUE, TRUE)
# )
# pop level data ----------------------------------------------------------
### ipw mle (is gee) ---------------------------------------------------------------------
ipw_mle <- nonprob(
selection = ~x1 + x2,
target = ~y1 + y2,
pop_total = kim2019_totals,
data = kim2019_sample_nonprob,
method_selection = "logit")
expect_equal(
ipw_mle$confidence_interval$lower_bound < kim2019_y_true &
ipw_mle$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
### mi glm
mi_glm <- nonprob(outcome = y1 + y2 ~ x1 + x2,
pop_totals = kim2019_totals,
method_outcome = "glm",
data = kim2019_sample_nonprob)
expect_equal(
mi_glm$confidence_interval$lower_bound < kim2019_y_true &
mi_glm$confidence_interval$upper_bound > kim2019_y_true,
c(TRUE, TRUE)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.