| pnormp | R Documentation |
Probability function for the exponential power distribution with location parameter
mu, scale parameter sigmap and shape parameter p.
pnormp(q, mu=0, sigmap=1, p=2, lower.tail=TRUE, log.pr=FALSE)
q |
Vector of quantiles. |
mu |
Vector of location parameters. |
sigmap |
Vector of scale parameters. |
p |
Shape parameter. |
lower.tail |
Logical; if TRUE (default), probabilities are |
log.pr |
Logical; if TRUE, probabilities |
If mu, sigmap or p are not specified they assume the default values 0, 1 and 2,
respectively.
The exponential power distribution has density function
f(x) = \frac{1}{2 p^{(1/p)} \Gamma(1+1/p) \sigma_p} e^{-\frac{|x - \mu|^p}{p \sigma_p^p}}
where \mu is the location parameter, \sigma_p the scale parameter and p the
shape parameter.
When p=2 the exponential power distribution becomes the Normal Distribution, when
p=1 the exponential power distribution becomes the Laplace Distribution, when
p\rightarrow\infty the exponential power distribution becomes the Uniform Distribution.
pnormp gives the probability of an exponential power distribution.
Angelo M. Mineo
Normal for the Normal distribution, Uniform for the Uniform distribution, and Special for the Gamma function.
## Compute the distribution function for a vector x with mu=0, sigmap=1 and p=1.5
## At the end we have the graph of the exponential power distribution function with p=1.5.
x <- c(-1, 1)
pr <- pnormp(x, p=1.5)
print(pr)
plot(function(x) pnormp(x, p=1.5), -4, 4,
main = "Exponential Power Distribution Function (p=1.5)", ylab="F(x)")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.