cpCopula | R Documentation |
Nonparametric test for change-point detection particularly sensitive to changes in the copula of multivariate continuous observations. The observations can be serially independent or dependent (strongly mixing). Approximate p-values for the test statistic are obtained by means of a multiplier approach. Details can be found in the first reference.
cpCopula(x, method = c("seq", "nonseq"), b = NULL,
weights = c("parzen", "bartlett"), m = 5,
L.method=c("max","median","mean","min"),
N = 1000, init.seq = NULL, include.replicates = FALSE)
x |
a data matrix whose rows are multivariate continuous observations. |
method |
a string specifying the simulation method for
generating multiplier replicates of the test statistic;
can be either |
b |
strictly positive integer specifying the value of the
bandwidth parameter determining the serial dependence when
generating dependent multiplier sequences using the 'moving average
approach'; see Section 5 of the second reference. The
value 1 will create i.i.d. multiplier
sequences suitable for serially independent observations. If set to
|
weights |
a string specifying the kernel for creating the weights used in the generation of dependent multiplier sequences within the 'moving average approach'; see Section 5 of the second reference. |
m |
a strictly positive integer specifying the number of points of the
uniform grid on |
L.method |
a string specifying how the parameter |
N |
number of multiplier replications. |
init.seq |
a sequence of independent standard normal variates of
length |
include.replicates |
a logical specifying whether the
object of |
The approximate p-value is computed as
(0.5 +\sum_{i=1}^N\mathbf{1}_{\{S_i\ge S\}})/(N+1),
where S
and S_i
denote the test statistic and
a multiplier replication, respectively. This ensures that the
approximate p-value is a number strictly between 0 and 1, which is
sometimes necessary for further treatments.
An object of class
htest
which is a list,
some of the components of which are
statistic |
value of the test statistic. |
p.value |
corresponding approximate p-value. |
cvm |
the values of the |
b |
the value of parameter |
These tests were derived under the assumption of continuous margins.
A. Bücher, I. Kojadinovic, T. Rohmer and J. Segers (2014), Detecting changes in cross-sectional dependence in multivariate time series, Journal of Multivariate Analysis 132, pages 111-128, https://arxiv.org/abs/1206.2557.
A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/1306.3930.
cpRho()
for a related test based on
Spearman's rho, cpTau()
for a related test based on
Kendall's tau, cpDist()
for a related test based
on the multivariate empirical d.f., bOptEmpProc()
for the
function used to estimate b
from x
if b = NULL
.
## Not run:
require(copula)
n <- 100
k <- 50 ## the true change-point
u <- rCopula(k, gumbelCopula(1.5))
v <- rCopula(n - k, gumbelCopula(3))
x <- rbind(u,v)
cp <- cpCopula(x, b = 1)
cp
## Estimated change-point
which(cp$cvm == max(cp$cvm))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.