.cpu.time.ini | R Documentation |
Listed below are supporting functions for the major methods in npsp.
.cpu.time.ini()
revdim(a, d)
.compute.masked(bin, cov.bin = NULL, tol.mask = npsp.tolerance(2))
.wloss(est, teor, w, loss = c("MSE", "MRSE", "MAE", "MRAE"))
## S3 method for class 'locpol.bin'
residuals(object, ...)
.kriging.simple.solve(x, newx, svm)
## S3 method for class 'np.geo'
residuals(object, ...)
## S3 method for class 'grid.par'
print(x, ...)
## S3 method for class 'grid.par'
dim(x)
## S3 method for class 'grid.par'
dimnames(x)
## S3 method for class 'grid.par'
as.data.frame(x, row.names = dimnames(x), optional = FALSE, ...)
is.data.grid(x)
## S3 method for class 'data.grid'
dim(x)
## S3 method for class 'data.grid'
dimnames(x)
.rice.rule(x, a = 2, b = 3, ...)
splot.plt(
horizontal = FALSE,
legend.shrink = 0.9,
legend.width = 1,
legend.mar = ifelse(horizontal, 3.1, 5.1),
bigplot = NULL,
smallplot = NULL
)
.rev.colorRampPalette(colors, interpolate = "spline", ...)
a |
scale values. |
cov.bin |
(optional) covariance matrix of the binned data or semivariogram model
( |
object |
object used to select a method:
local polynomial estimate of the trend (class |
... |
further arguments passed to or from other methods. |
x |
vector/matrix with data locations (each component/row is an observation location). |
newx |
vector/matrix with the (irregular) locations to predict
(each component/row is a prediction location).
or an object extending |
svm |
semivariogram model (of class extending |
b |
exponent values. |
.compute.masked
returns a list with components:
mask |
logical vector |
w |
|
sw |
|
hat |
(optional) |
cov.bin |
(optional) masked (aproximated) covariance matrix of the binned data. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.