Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, echo=FALSE, message=FALSE, warning=FALSE--------------------------
suppressPackageStartupMessages({
library(nrba)
library(survey)
library(dplyr)
})
## ---- echo=FALSE--------------------------------------------------------------
involvement_survey_srs |>
mutate(RESPONSE_STATUS = case_when(
RESPONSE_STATUS == "Respondent" ~ "1 (Respondent)",
RESPONSE_STATUS == "Nonrespondent" ~ "2 (Nonrespondent)",
RESPONSE_STATUS == "Ineligible" ~ "3 (Ineligible)",
RESPONSE_STATUS == "Unknown" ~ "4 (Unknown Eligibility)"
)) |>
select(UNIQUE_ID, RESPONSE_STATUS) |>
group_by(RESPONSE_STATUS) |>
sample_n(size = 2) |>
ungroup() |>
sample_n(size = 8, replace = FALSE) |>
knitr::kable()
## -----------------------------------------------------------------------------
# Load example data
data('involvement_survey_srs', package = "nrba")
# Calculate overall response rates for the survey
calculate_response_rates(
data = involvement_survey_srs,
status = "RESPONSE_STATUS",
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
rr_formula = 'RR1'
)
## -----------------------------------------------------------------------------
# Load example data
data('involvement_survey_str2s', package = "nrba")
# Calculate overall response rates for the survey
calculate_response_rates(
data = involvement_survey_str2s,
weights = "BASE_WEIGHT",
status = "RESPONSE_STATUS",
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
rr_formula = 'RR1'
)
## -----------------------------------------------------------------------------
library(dplyr)
involvement_survey_srs |>
group_by(STUDENT_RACE) |>
calculate_response_rates(
status = "RESPONSE_STATUS",
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
rr_formula = 'RR1'
)
## ---- echo=FALSE--------------------------------------------------------------
calculate_response_rates(
data = involvement_survey_srs,
status = "RESPONSE_STATUS",
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
rr_formula = c('RR1', 'RR3', 'RR5')
)
## -----------------------------------------------------------------------------
involvement_survey_srs |>
group_by(PARENT_HAS_EMAIL) |>
calculate_response_rates(
status = "RESPONSE_STATUS",
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
rr_formula = 'RR3',
elig_method = "CASRO-subgroup"
)
## -----------------------------------------------------------------------------
involvement_survey_srs %>%
mutate(e_by_email = ifelse(PARENT_HAS_EMAIL == 'Has Email', 0.75, 0.25)) %>%
group_by(PARENT_HAS_EMAIL) %>%
calculate_response_rates(status = "RESPONSE_STATUS",
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
rr_formula = "RR3",
elig_method = "specified",
e = "e_by_email")
## -----------------------------------------------------------------------------
library(survey)
# Create a survey design object with the 'survey' package
involvement_svy <- svydesign(
data = involvement_survey_str2s,
weights = ~ BASE_WEIGHT,
strata = ~ SCHOOL_DISTRICT,
ids = ~ SCHOOL_ID + UNIQUE_ID, # School ID and Student ID
fpc = ~ N_SCHOOLS_IN_DISTRICT + N_STUDENTS_IN_SCHOOL # Population sizes at each sampling stage
)
## -----------------------------------------------------------------------------
chisq_test_ind_response(
survey_design = involvement_svy,
# Specify the response status variable
status = "RESPONSE_STATUS",
# Specify how to interpret categories of response status variable
status_codes = c(
'ER' = 'Respondent',
'EN' = 'Nonrespondent',
'IE' = 'Ineligible',
'UE' = 'Unknown'
),
# Specify variable(s) to use for the Chi-Square test(s)
aux_vars = c("STUDENT_RACE", "PARENT_HAS_EMAIL")
)
## -----------------------------------------------------------------------------
predict_response_status_via_glm(
survey_design = involvement_svy,
status = "RESPONSE_STATUS",
status_codes = c("ER" = "Respondent",
"EN" = "Nonrespondent",
"IE" = "Ineligible",
"UE" = "Unknown"),
# Specify models
model_selection = 'main-effects',
# Specify predictor variables for the model
numeric_predictors = c("STUDENT_AGE"),
categorical_predictors = c("PARENT_HAS_EMAIL", "STUDENT_RACE")
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.