Description Usage Arguments Details Value References See Also Examples
View source: R/n_EA_E_and_n_EB_E2p_AB_E.R
Given the n-vectors for positions A (n_EA_E
) and B (n_EB_E
), the
output is the delta vector from A to B (p_AB_E
).
1 2 3 4 5 6 7 8 | n_EA_E_and_n_EB_E2p_AB_E(
n_EA_E,
n_EB_E,
z_EA = 0,
z_EB = 0,
a = 6378137,
f = 1/298.257223563
)
|
n_EA_E |
n-vector of position A, decomposed in E (3x1 vector) (no unit) |
n_EB_E |
n-vector of position B, decomposed in E (3x1 vector) (no unit) |
z_EA |
Depth of system A, relative to the ellipsoid (z_EA = -height) (m, default 0) |
z_EB |
Depth of system B, relative to the ellipsoid (z_EB = -height) (m, default 0) |
a |
Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137) |
f |
Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563) |
The calculation is exact, taking the ellipticity of the Earth into account.
It is also nonsingular as both n-vector and p-vector are nonsingular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified
via the optional parameters a
and f
.
Position vector from A to B, decomposed in E (3x1 vector)
Kenneth Gade A Nonsingular Horizontal Position Representation. The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.
n_EA_E_and_p_AB_E2n_EB_E
, p_EB_E2n_EB_E
and
n_EB_E2p_EB_E
1 2 3 4 5 6 7 | lat_EA <- rad(1); lon_EA <- rad(2); z_EA <- 3
lat_EB <- rad(4); lon_EB <- rad(5); z_EB <- 6
n_EA_E <- lat_lon2n_E(lat_EA, lon_EA)
n_EB_E <- lat_lon2n_E(lat_EB, lon_EB)
n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.