n_EA_E_and_n_EB_E2p_AB_E: Find the delta position from two positions A and B

Description Usage Arguments Details Value References See Also Examples

View source: R/n_EA_E_and_n_EB_E2p_AB_E.R

Description

Given the n-vectors for positions A (n_EA_E) and B (n_EB_E), the output is the delta vector from A to B (p_AB_E).

Usage

1
2
3
4
5
6
7
8
n_EA_E_and_n_EB_E2p_AB_E(
  n_EA_E,
  n_EB_E,
  z_EA = 0,
  z_EB = 0,
  a = 6378137,
  f = 1/298.257223563
)

Arguments

n_EA_E

n-vector of position A, decomposed in E (3x1 vector) (no unit)

n_EB_E

n-vector of position B, decomposed in E (3x1 vector) (no unit)

z_EA

Depth of system A, relative to the ellipsoid (z_EA = -height) (m, default 0)

z_EB

Depth of system B, relative to the ellipsoid (z_EB = -height) (m, default 0)

a

Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137)

f

Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563)

Details

The calculation is exact, taking the ellipticity of the Earth into account. It is also nonsingular as both n-vector and p-vector are nonsingular (except for the center of the Earth). The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified via the optional parameters a and f.

Value

Position vector from A to B, decomposed in E (3x1 vector)

References

Kenneth Gade A Nonsingular Horizontal Position Representation. The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

n_EA_E_and_p_AB_E2n_EB_E, p_EB_E2n_EB_E and n_EB_E2p_EB_E

Examples

1
2
3
4
5
6
7
lat_EA <- rad(1); lon_EA <- rad(2); z_EA   <- 3
lat_EB <- rad(4); lon_EB <- rad(5); z_EB   <- 6

n_EA_E <- lat_lon2n_E(lat_EA, lon_EA)
n_EB_E <- lat_lon2n_E(lat_EB, lon_EB)

n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)

nvctr documentation built on Oct. 28, 2020, 5:07 p.m.