Description Usage Arguments Details Value References See Also Examples

View source: R/n_EA_E_and_n_EB_E2p_AB_E.R

Given the n-vectors for positions A (`n_EA_E`

) and B (`n_EB_E`

), the
output is the delta vector from A to B (`p_AB_E`

).

1 2 3 4 5 6 7 8 | ```
n_EA_E_and_n_EB_E2p_AB_E(
n_EA_E,
n_EB_E,
z_EA = 0,
z_EB = 0,
a = 6378137,
f = 1/298.257223563
)
``` |

`n_EA_E` |
n-vector of position A, decomposed in E (3x1 vector) (no unit) |

`n_EB_E` |
n-vector of position B, decomposed in E (3x1 vector) (no unit) |

`z_EA` |
Depth of system A, relative to the ellipsoid (z_EA = -height) (m, default 0) |

`z_EB` |
Depth of system B, relative to the ellipsoid (z_EB = -height) (m, default 0) |

`a` |
Semi-major axis of the Earth ellipsoid (m, default [WGS-84] 6378137) |

`f` |
Flattening of the Earth ellipsoid (no unit, default [WGS-84] 1/298.257223563) |

The calculation is exact, taking the ellipticity of the Earth into account.
It is also nonsingular as both n-vector and p-vector are nonsingular
(except for the center of the Earth).
The default ellipsoid model used is WGS-84, but other ellipsoids (or spheres) might be specified
via the optional parameters `a`

and `f`

.

Position vector from A to B, decomposed in E (3x1 vector)

Kenneth Gade A Nonsingular Horizontal Position Representation.
*The Journal of Navigation*, Volume 63, Issue 03, pp 395-417, July 2010.

`n_EA_E_and_p_AB_E2n_EB_E`

, `p_EB_E2n_EB_E`

and
`n_EB_E2p_EB_E`

1 2 3 4 5 6 7 | ```
lat_EA <- rad(1); lon_EA <- rad(2); z_EA <- 3
lat_EB <- rad(4); lon_EB <- rad(5); z_EB <- 6
n_EA_E <- lat_lon2n_E(lat_EA, lon_EA)
n_EB_E <- lat_lon2n_E(lat_EB, lon_EB)
n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)
``` |

nvctr documentation built on Oct. 28, 2020, 5:07 p.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.