predict.ocf | R Documentation |
Prediction method for class ocf
.
## S3 method for class 'ocf'
predict(object, data = NULL, type = "response", ...)
object |
An |
data |
Data set of class |
type |
Type of prediction. Either |
... |
Further arguments passed to or from other methods. |
If type == "response"
, the routine returns the predicted conditional class probabilities and the predicted class
labels. If forests are honest, the predicted probabilities are honest.
If type == "terminalNodes"
, the IDs of the terminal node in each tree for each observation in data
are returned.
Desired predictions.
Riccardo Di Francesco
Di Francesco, R. (2025). Ordered Correlation Forest. Econometric Reviews, 1–17. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/07474938.2024.2429596")}.
ocf
, marginal_effects
## Generate synthetic data.
set.seed(1986)
data <- generate_ordered_data(100)
sample <- data$sample
Y <- sample$Y
X <- sample[, -1]
## Training-test split.
train_idx <- sample(seq_len(length(Y)), floor(length(Y) * 0.5))
Y_tr <- Y[train_idx]
X_tr <- X[train_idx, ]
Y_test <- Y[-train_idx]
X_test <- X[-train_idx, ]
## Fit ocf on training sample.
forests <- ocf(Y_tr, X_tr)
## Predict on test sample.
predictions <- predict(forests, X_test)
head(predictions$probabilities)
predictions$classification
## Get terminal nodes.
predictions <- predict(forests, X_test, type = "terminalNodes")
predictions$forest.1[1:10, 1:20] # Rows are observations, columns are forests.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.