predict.oml | R Documentation |
Prediction method for class oml
.
## S3 method for class 'oml'
predict(object, data = NULL, ...)
object |
An |
data |
Data set of class |
... |
Further arguments passed to or from other methods. |
If object$learner == "l1"
, then model.matrix
is used to handle non-numeric covariates. If we also
have object$scaling == TRUE
, then data
is scaled to have zero mean and unit variance.
Matrix of predictions.
Riccardo Di Francesco
Di Francesco, R. (2025). Ordered Correlation Forest. Econometric Reviews, 1–17. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/07474938.2024.2429596")}.
multinomial_ml
, ordered_ml
## Generate synthetic data.
set.seed(1986)
data <- generate_ordered_data(100)
sample <- data$sample
Y <- sample$Y
X <- sample[, -1]
## Training-test split.
train_idx <- sample(seq_len(length(Y)), floor(length(Y) * 0.5))
Y_tr <- Y[train_idx]
X_tr <- X[train_idx, ]
Y_test <- Y[-train_idx]
X_test <- X[-train_idx, ]
## Fit ordered machine learning on training sample using two different learners.
ordered_forest <- ordered_ml(Y_tr, X_tr, learner = "forest")
ordered_l1 <- ordered_ml(Y_tr, X_tr, learner = "l1")
## Predict out of sample.
predictions_forest <- predict(ordered_forest, X_test)
predictions_l1 <- predict(ordered_l1, X_test)
## Compare predictions.
cbind(head(predictions_forest), head(predictions_l1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.