BOLLG | R Documentation |
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2016) specified by the pdf
f=\frac{α\,g\,G^{a\,α-1}\bar{G}^{b\,α-1}}{B(a,b)[G^α+\bar{G}^α]^{a+b}}
for G any valid continuous cdf , \bar{G}=1-G, g the corresponding pdf, B(a, b), the beta function, a, b > 0, the shape parameter, α > 0, the first shape parameter.
pbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) dbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) qbollg(q, alpha = 1, a = 1, b = 1, G = pnorm, ...) rbollg(n, alpha = 1, a = 1, b = 1, G = pnorm, ...) hbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
a |
the value of the shape parameter, must be positive, the default is 1. |
b |
the value of the shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pbollg
gives the distribution function,
dbollg
gives the density,
qbollg
gives the quantile function,
hbollg
gives the hazard function and
rbollg
generates random variables from the The beta Odd log-logistic family of
distributions (BOLL-G) for baseline cdf G.
Cordeiro, G. M., Alizadeh, M., Tahir, M. H., Mansoor, M., Bourguignon, M., Hamedani, G. G. (2016). The beta odd log-logistic generalized family of distributions. Hacettepe Journal of Mathematics and Statistics, 45(4), 1175-1202.
x <- seq(0, 1, length.out = 21) pbollg(x) pbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) dbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dbollg, -3, 3) qbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rbollg(n, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) hbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hbollg, -3, 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.