ZBOLLG | R Documentation |
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2016) specified by the pdf
f=\frac{α\,g\,G^{α-1}\bar{G}^{α-1}}{Γ(β)[G^α+\bar{G}^α]^2}\,\{-\log[1-\frac{G^α}{G^α+\bar{G}^α}]\}^{β-1}
for G any valid continuous cdf , \bar{G}=1-G, g the corresponding pdf, Γ(β) the Gamma funcion, α > 0, the first shape parameter, and β > 0, the second shape parameter.
pzbollg(x, alpha = 1, beta = 1, G = pnorm, ...) dzbollg(x, alpha = 1, beta = 1, G = pnorm, ...) qzbollg(q, alpha = 1, beta = 1, G = pnorm, ...) rzbollg(n, alpha = 1, beta = 1, G = pnorm, ...) hzbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pzbollg
gives the distribution function,
dzbollg
gives the density,
qzbollg
gives the quantile function,
hzbollg
gives the hazard function and
rzbollg
generates random variables from the The Zografos-Balakrishnan Odd log-logistic family of
distributions (ZBOLL-G) for baseline cdf G.
Cordeiro, G. M., Alizadeh, M., Ortega, E. M., Serrano, L. H. V. (2016). The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications. Hacettepe Journal of Mathematics and Statistics, 45(6), 1781-1803. .
x <- seq(0, 1, length.out = 21) pzbollg(x) pzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dzbollg, -3, 3) qzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rzbollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hzbollg, -3, 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.