Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(oncoPredict) #This script provides an example of how to download cnv (copy number variation) data from the GDC database for GBM #(glioblastoma), how to apply the map_cnv() function to that data to map cnvs to genes, and how to test the drugs in your drug #response dataset to each cnv to identify biomarkers that enrich for drug response. #First, download CNV data for your cancer of interest from GDC database. The cnv data will be exported to your #working directory as cnv.txt #This code will export the CNV data into a text file called, 'cnv.txt', containing a table with colnames() 'Sample', 'Chromosome', 'Start', 'End', 'Num Probes', 'Segment_Mean' #The genome of reference is hg19. #query.gbm.nocnv<-GDCquery(project = "TCGA-GBM", # data.category = "Copy number variation", # legacy = TRUE, # file.type = "nocnv_hg19.seg", # sample.type = c("Primary Tumor")) #patient_total<-nrow((query.gbm.nocnv$results)[[1]]) #The total number of patients GDC has CNV data for #query.gbm.nocnv$results[[1]]<-query.gbm.nocnv$results[[1]][1:patient_total,] #GDCdownload(query.gbm.nocnv, files.per.chunk = 100) #gbm.nocnv<-GDCprepare(query.gbm.nocnv, save = TRUE, save.filename = "GBMnocnvhg19.rda") #write.table(gbm.nocnv, file='cnv.txt') #Second, apply map_cnv() to map cnv data to genes. The mapped cnv data will be exported to your working directory as map.RData #The mapping is accomplished by intersecting the gene with the overlapping CNV level. If the gene isn't fully #captured by the CNV, an NA will be assigned. #Determine the parameters of the map_cnv() function. Cnvs<-read.table('cnv.txt', header=TRUE, row.names=1) #Third, apply idwas() to test each cnv and each drug. The p-values and beta-values for each test will be exported to #your working directory as CnvTestOutput_pVals.txt and CnvTestOutput_betas.txt #Determine the parameters of the idwas() function... #Set the drug_prediction parameter. #Make sure rownames() are samples, and colnames() are drugs. Also make sure this data is a data frame. drug_prediction<-t(as.data.frame(read.table('DrugPredictions.txt', header=TRUE, row.names=1))) #dim(drug_prediction) #165 198 #In this example, I had to replace the '.' in the names of these TCGA samples with '-' so that they are of the same form as samples in the cnv data (you may not have to do this). rownames(drug_prediction)<-gsub(".", "-", rownames(drug_prediction), fixed=T) #Make sure the sample identifiers in the 'drug prediction' data are of similar form as the sample identifiers in the 'data' parameter. rows=rownames(drug_prediction) rownames(drug_prediction)<-substring(rows, 3, nchar(rows)) drug_prediction<-as.data.frame(drug_prediction) #Determine the number of samples you want the CNVs to be amplified in. The default is 10. n=10 #Indicate whether or not you would like to test cnv data. If TRUE, you will test cnv data. If FALSE, you will test mutation data. cnv=TRUE wd<-tempdir() savedir<-setwd(wd) #Apply map_cnv() #This function produces the file map.RData, which stores the object 'theCnvQuantVecList_mat' map_cnv(Cnvs=Cnvs) #Set the data parameter. load('map.RData') #This loads the object 'theCnvQuantVecList_mat', which was obtained using map_cnv() #Make sure this data is a data frame and that colnames() are samples. data<-as.data.frame(t(theCnvQuantVecList_mat)) samps<-colnames(data) colnames(data)<-substr(samps,1,nchar(samps)-12) #Apply idwas() idwas(drug_prediction=drug_prediction, data=data, n=n, cnv=cnv)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.