The goal of optconerrf
is to enable the use of adaptive two-stage
clinical trial designs with the optimal conditional error function
approach proposed by Brannath & Bauer (2004). The optimal conditional
error function minimises the expected second-stage sample
size/information under the assumption that the true effect size is
known. As an extension to the original methodology, optconerrf
allows
the effect size used to plan the second stage to depend on the interim
data.
You can install the development version of optconerrf from GitHub with:
# install.packages("devtools")
devtools::install_github("morten-dreher/optconerrf")
Installing from CRAN can be done via:
install.packages("optconerrf")
A design object with the following properties:
alpha = 0.025
)alpha1 = 0.0001
, p-value scale)alpha0 = 0.5
, p-value scale)conditionalPower = 0.9
)delta1 = 0.25
)delta1
to plan the
secon d stage, useInterimEstimate = FALSE
)firstStageInformation = 100
)likelihoodRatioDistribution = "fixed"
) with effect 0.25
(deltaLR = 0.25
) (i.e., minimising the expected second-stage
information under the assumption that the true effect size is 0.25)can be generated by the code below.
library(optconerrf)
trialDesign <-
getDesignOptimalConditionalErrorFunction(
alpha = 0.025,
alpha1 = 0.0001,
alpha0 = 0.5,
conditionalPower = 0.9,
delta1 = 0.25,
useInterimEstimate = FALSE,
firstStageInformation = 100,
likelihoodRatioDistribution = "fixed",
deltaLR = 0.25
)
The design object can then be passed to other central package functions,
such as getExpectedSecondStageInformation()
:
getExpectedSecondStageInformation(
trialDesign,
likelihoodRatioDistribution = "fixed",
deltaLR = 0)
#> [1] 99.84901
The above code calculates the expected second-stage information of the
design for a scenario under the null hypothesis (deltaLR = 0
).
optconerrf
also implements plot()
and print()
generics:
plot(trialDesign)
print(trialDesign)
#> Optimal Conditional Error Function Design:
#>
#> General design parameters:
#> Overall significance level: 0.025
#> First-stage efficacy boundary (p-value scale): 1e-04
#> Binding first-stage futility boundary (p-value scale): 0.5
#>
#> Conditional power specification:
#> Target conditional power: 0.9
#> Alternative: 0.25
#> First-stage non-centrality parameter: 2.5
#> First-stage information: 100
#>
#> Likelihood ratio specification:
#> Fixed parameter(s) in likelihood ratio: 0.25
#> Parameter weights: 1
#>
#> Level constant:
#> Constant: 7.079328
#> Searched on interval: [0, 10]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.