View source: R/getMonotonisationConstants.R
getMonotonisationConstants | R Documentation |
Computes the constants required to make a function non-increasing on the specified interval. The output of this function is necessary to calculate the monotone optimal conditional error function.
The output object is a list that contains the intervals on which constant values are required, specified by the minimum dls
and maximum dus
of the interval and the respective constants, qs
.
getMonotonisationConstants(
fun,
lower = 0,
upper = 1,
argument,
nSteps = 10^4,
epsilon = 10^(-5),
numberOfIterationsQ = 10^4,
design
)
fun |
The function to be made monotone. |
lower |
The lower limit of the interval on which the function should be monotonised. Must be a numeric value. |
upper |
The upper limit of the interval on which the function should be monotonised. |
argument |
The argument in which the function should be monotonised, given as a character. |
nSteps |
The number of steps to be taken when checking the function for monotonicity. Must be a numeric value. Default 10^4. |
epsilon |
Maximum allowed difference between the initial and monotone integral. Must be a numeric value. Default 10^-5. |
numberOfIterationsQ |
Maximum number of iterations allowed to determine each value of q. Must be a numeric value. Default 10^4. |
design |
An object of class |
A list containing the monotonisation constants (element $qs
) and the intervals on which they must be applied, specified via minimum (element qls
) and maximum (element qus
).
Brannath, W., Dreher, M., zur Verth, J., Scharpenberg, M. (2024). Optimal monotone conditional error functions. https://arxiv.org/abs/2402.00814
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.