Nothing
test_that("orbital works with workflows - recipe", {
skip_if_not_installed("recipes")
skip_if_not_installed("tidypredict")
skip_if_not_installed("workflows")
rec_spec <- recipes::recipe(mpg ~ ., data = mtcars) %>%
recipes::step_normalize(recipes::all_numeric_predictors())
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow() %>%
workflows::add_recipe(rec_spec) %>%
workflows::add_model(lm_spec)
wf_fit <- parsnip::fit(wf_spec, mtcars)
res <- orbital(wf_fit)
expect_s3_class(res, "orbital_class")
expect_true(is.character(res))
expect_named(res)
expect_length(res, 1 + (ncol(mtcars) - 1))
})
test_that("orbital works with workflows - formula", {
skip_if_not_installed("tidypredict")
skip_if_not_installed("workflows")
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow() %>%
workflows::add_formula(mpg ~ .) %>%
workflows::add_model(lm_spec)
wf_fit <- parsnip::fit(wf_spec, mtcars)
res <- orbital(wf_fit)
expect_s3_class(res, "orbital_class")
expect_true(is.character(res))
expect_named(res, ".pred")
expect_length(res, 1)
})
test_that("orbital works with workflows - variables", {
skip_if_not_installed("tidypredict")
skip_if_not_installed("workflows")
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow() %>%
workflows::add_variables(outcomes = "mpg", predictors = everything()) %>%
workflows::add_model(lm_spec)
wf_fit <- parsnip::fit(wf_spec, mtcars)
res <- orbital(wf_fit)
expect_s3_class(res, "orbital_class")
expect_true(is.character(res))
expect_named(res, ".pred")
expect_length(res, 1)
})
test_that("orbital errors on non-trained workflow", {
skip_if_not_installed("recipes")
skip_if_not_installed("workflows")
rec_spec <- recipes::recipe(mpg ~ ., data = mtcars) %>%
recipes::step_normalize(recipes::all_numeric_predictors())
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow(rec_spec, lm_spec)
expect_snapshot(
error = TRUE,
orbital(wf_spec)
)
})
test_that("orbital works with recipe", {
skip_if_not_installed("tidypredict")
skip_if_not_installed("recipes")
rec_spec <- recipes::recipe(mpg ~ ., data = mtcars) %>%
recipes::step_normalize(recipes::all_numeric_predictors())
rec_prep <- recipes::prep(rec_spec)
res <- orbital(rec_prep)
expect_s3_class(res, "orbital_class")
expect_true(is.character(res))
expect_named(res)
})
test_that("orbital errors untrained recipe", {
skip_if_not_installed("recipes")
rec_spec <- recipes::recipe(mpg ~ ., data = mtcars) %>%
recipes::step_normalize(recipes::all_numeric_predictors())
expect_snapshot(
error = TRUE,
orbital(rec_spec)
)
})
test_that("orbital works with parsnip", {
skip_if_not_installed("tidypredict")
lm_spec <- parsnip::linear_reg()
lm_fit <- parsnip::fit(lm_spec, mpg ~ ., data = mtcars)
res <- orbital(lm_fit)
expect_s3_class(res, "orbital_class")
expect_true(is.character(res))
expect_named(res, ".pred")
})
test_that("orbital errors on non-trained parsnip", {
skip_if_not_installed("parsnip")
lm_spec <- parsnip::linear_reg()
expect_snapshot(
error = TRUE,
orbital(lm_spec)
)
})
test_that("orbital errors nicely on post-processing", {
skip_if_not_installed("workflows")
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow() %>%
workflows::add_formula(mpg ~ .) %>%
workflows::add_model(lm_spec)
wf_fit <- parsnip::fit(wf_spec, mtcars)
# fake post-processing happening
wf_fit$post$actions <- list(thing = 1)
expect_snapshot(
error = TRUE,
orbital(wf_fit)
)
})
test_that("orbital errors on wrong input", {
expect_snapshot(
error = TRUE,
orbital(lm(mpg ~ ., data = mtcars))
)
})
test_that("orbital printing works", {
skip_if_not_installed("recipes")
skip_if_not_installed("tidypredict")
skip_if_not_installed("workflows")
rec_spec <- recipes::recipe(mpg ~ ., data = mtcars) %>%
recipes::step_normalize(recipes::all_numeric_predictors())
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow(rec_spec, lm_spec)
wf_fit <- parsnip::fit(wf_spec, mtcars)
expect_snapshot(
orbital(wf_fit)
)
expect_snapshot(
print(orbital(wf_fit), digits = 2)
)
expect_snapshot(
print(orbital(wf_fit), truncate = FALSE)
)
})
test_that("prefix argument works", {
skip_if_not_installed("recipes")
skip_if_not_installed("parsnip")
skip_if_not_installed("workflows")
skip_if_not_installed("tidypredict")
rec_spec <- recipes::recipe(mpg ~ ., data = mtcars) %>%
recipes::step_normalize(recipes::all_numeric_predictors())
lm_spec <- parsnip::linear_reg()
wf_spec <- workflows::workflow(rec_spec, lm_spec)
wf_fit <- parsnip::fit(wf_spec, mtcars)
orb_obj <- orbital(wf_fit, prefix = "pred")
expect_true("pred" %in% names(orb_obj))
expect_false(".pred" %in% names(orb_obj))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.