ordregr.object: Object resulting from the fit of a proportional odds model...

ordregr.objectR Documentation

Object resulting from the fit of a proportional odds model using 'ordregr'

Description

An object returned by the ordregr function: this is a list with various components related to the fit of such a model.

Value

A ordregr object is a list with following elements:

  • val : ⁠ ⁠Value of the log-posterior at convergence.

  • val.start : ⁠ ⁠Value of the log-posterior at the start of the Newton-Raphson (N-R) algorithm.

  • theta : ⁠ ⁠(Penalized) MLE or MAP of the regression coefficients.

  • grad : ⁠ ⁠Gradient of the log-posterior at theta.

  • Hessian : ⁠ ⁠Hessian of the log-posterior at theta.

  • iter : ⁠ ⁠Number of iterations of the N-R algorithm.

  • Hessian0 : ⁠ ⁠Hessian of the (non-penalized) log-likelihood at theta.

  • Sigma.theta : ⁠ ⁠Variance-covariance of 'theta'.

  • ED.full : ⁠ ⁠Effective degrees of freedom associated to each regression parameter, penalized parameters included.

  • se.theta : ⁠ ⁠Standard errors of the regression coefficents.

  • theta.mat : ⁠ ⁠Matrix containing the point estimate, standard error, credible interval, Z-score and P-value for theta.

  • nc : ⁠ ⁠Number of categories for the ordinal response.

  • nalpha : ⁠ ⁠Number of intercepts in the proportional odds model (=nc-1) .

  • nbeta : ⁠ ⁠Number of regression parameters (intercepts excluded).

  • nfixed : ⁠ ⁠Number of non-penalized regression parameters.

  • ci.level : ⁠ ⁠Nominal coverage of the credible intervals (Default: .95).

  • n : ⁠ ⁠Sample size.

  • call : ⁠ ⁠Function call.

  • descending : ⁠ ⁠Logical indicating if the odds of the response taking a value in the upper scale should be preferred over values in the lower scale.

  • use.prior : ⁠ ⁠Logical indicating if a prior (such as a penalty) is assumed for the regression parameters.

  • lpost : ⁠ ⁠Value of the log-posterior at convergence.

  • levidence : ⁠ ⁠Log of the marginal likelihood (also named 'evidence').

Author(s)

Philippe Lambert p.lambert@uliege.be

References

Lambert, P. and Gressani, 0. (2023) Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models. Statistical Modelling. <doi:10.1177/1471082X231181173>. Preprint: <arXiv:2210.01668>.

See Also

ordregr, print.ordregr


ordgam documentation built on Sept. 14, 2023, 5:07 p.m.