simulateSpatialData: simulate normal distributed data

View source: R/simulateSpatialData.R

simulateSpatialDataR Documentation

simulate normal distributed data

Description

Simulate normal distributed data with spatial correlation structure

theta (\theta) describes how rapidly the correlation declines with respect to the distance between two voxels. The three-dimensional coordinates of the voxels are defined as all combinations of vector c = (1, \dots, m1/3), then \Sigma_\theta = \exp(-\theta K) where K is the matrix containing the euclidean distances between the three-dimensional coordinates' voxels. So, m^{1/3} must be an integer value.

Usage

simulateSpatialData(pi0,m,n, theta, seed = NULL, power = 0.8, alpha = 0.05)

Arguments

pi0

Numeric value in '[0,1]'. Proportion of true null hypothesis.

m

Numeric value. Number of variables.

n

Numeric value. Number of observations.

theta

Numeric value in '[0,1]'. Level of correlation between pairs of variables. See details

seed

Integer value. If you want to specify the seed. Default to to NULL

power

Numeric value in '[0,1]'. Level of power. Default to 0.8.

alpha

Numeric value in '[0,1]'. \alpha level to control the family-wise error rate. Default to 0.05.

Value

Returns a matrix with dimensions m \times n.

Author(s)

Angela Andreella


pARI documentation built on Sept. 11, 2024, 8:10 p.m.