Nothing
# Quantify Community Ecology From a Time Series of Simulated Fossil Assemblages
#
# Given the output from functions such as \code{simulateFossilAssemblageSeries},
# this function calculates various ecological measures that might be used as
# 'recovered' gradient values to compare against the original generating gradient values.
# @details
# Quantifies
# @inheritParams getSampleDCA
# @param fossilSeries The
# @return
# A list containing the input data and arguments, as well as the
# DCA score values found
# @aliases
# @seealso
# @references
# @examples
# @name quantifyCommunityEcology
# @rdname quantifyCommunityEcology
# @export
quantifyCommunityEcology <- function(
origAbundData,
fossilSeries,
useTransformedRelAbundance = TRUE,
projectIntoOrigDCA = TRUE,
powerRootTransform = 1
#inclusiveDCA = FALSE,
#singularDCA = TRUE,
#rawDCA = FALSE,
){
#require(vegan)
ecologyOutList <- list(
simAbundanceTable = fossilSeries$abundanceTable,
origAbundanceTable = origAbundData,
useTransformedRelAbundance = useTransformedRelAbundance,
projectIntoOrigDCA = projectIntoOrigDCA,
powerRootTransform = powerRootTransform
#artificialAbundanceTable = abundanceTable,
#braycurtisDistMat = bcdist,
#dcaOut = dcaOut
)
# 'singular' DCA is now the only real option
# if(singularDCA){
scoreDCA1_recovered <- numeric()
for(i in 1:nrow(fossilSeries$abundanceTable)){
# use getSampleDCA
scoreDCA1_recovered[i] <- getSampleDCA(
simSample = fossilSeries$abundanceTable[i,],
origAbundData = origAbundData,
useTransformedRelAbundance = useTransformedRelAbundance,
projectIntoOrigDCA = projectIntoOrigDCA,
whichAxes = 1,
powerRootTransform = powerRootTransform,
returnDCAforOrigAndSim = FALSE
)
}
ecologyOutList$scoreDCA1_recovered <- scoreDCA1_recovered
# }
######################
# deprecated ways of getting the DCA value for
#if(rawDCA){
# abundanceTable <- fossilSeries$abundanceTable # 1
# # Transform the abundance table to relative abundances,
# # and get the pair-wise Bray-Curtis distances.
# # recalculate relative abundance table
# relAbundanceTable <- t(apply(abundanceTable, 1, function(x) x/sum(x)))
# # get bray-curtis distances
# bcdist <- vegan::vegdist(relAbundanceTable, method = "bray")
# ## Doing a DCA on the Simulated Data
# dcaOut <- vegan::decorana(relAbundanceTable)
# scoreDCA1_raw <- vegan::scores(dcaOut)[ , 1]
# ecologyOutList$scoreDCA1_raw <- scoreDCA1_raw
# }
#if(inclusiveDCA){
# # 05-15-21: Need to combine original abundance data
# # into simulated to properly scale DCA (maybe?)
# # combine abundance table with original abundance table
# # add TEN copies of the original data
# abundanceTable <- rbind(fossilSeries$abundanceTable, origAbundData) # 1
# abundanceTable <- rbind(abundanceTable, origAbundData) # 2
# abundanceTable <- rbind(abundanceTable, origAbundData) # 3
# abundanceTable <- rbind(abundanceTable, origAbundData) # 4
# abundanceTable <- rbind(abundanceTable, origAbundData) # 5
# abundanceTable <- rbind(abundanceTable, origAbundData) # 6
# abundanceTable <- rbind(abundanceTable, origAbundData) # 7
# abundanceTable <- rbind(abundanceTable, origAbundData) # 8
# abundanceTable <- rbind(abundanceTable, origAbundData) # 9
# abundanceTable <- rbind(abundanceTable, origAbundData) # 10
# # Transform the abundance table to relative abundances,
# # and get the pair-wise Bray-Curtis distances.
# # recalculate relative abundance table
# relAbundanceTable <- t(apply(abundanceTable, 1, function(x) x/sum(x)))
# # get bray-curtis distances
# bcdist <- vegan::vegdist(relAbundanceTable, method = "bray")
# ## Doing a DCA on the Simulated Data
# dcaOut <- vegan::decorana(relAbundanceTable)
# scoreDCA1_inclusive <- vegan::scores(dcaOut)[1:nrow(fossilSeries$abundanceTable), 1]
# ecologyOutList$scoreDCA1_inclusive <- scoreDCA1_inclusive
# }
return(ecologyOutList)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.