ridge.net: Partial correlations with ridge regression.

Description Usage Arguments Value Author(s) References See Also Examples

Description

This function computes the matrix of partial correlations via an estimation of the corresponding regression models via Ridge Regression.

Usage

1
ridge.net(X, lambda, plot.it = FALSE, scale = TRUE, k = 10,verbose=FALSE)

Arguments

X

matrix of observations. The rows of X contain the samples, the columns of X contain the observed variables.

lambda

Vector of penalty terms.

scale

Scale the columns of X? Default is scale=TRUE.

k

Number of splits in k-fold cross-validation. Default value is k=10.

plot.it

Plot the cross-validation error as a function of lambda? Default is FALSE.

verbose

Print information on conflicting signs etc. Default is verbose=FALSE

Value

pcor

estimated matrix of partial correlations.

lambda.opt

optimal value of lambda for each of the ncol regression models.

Author(s)

Nicole Kraemer

References

N. Kraemer, J. Schaefer, A.-L. Boulesteix (2009) "Regularized Estimation of Large-Scale Gene Regulatory Networks using Gaussian Graphical Models", BMC Bioinformatics, 10:384

http://www.biomedcentral.com/1471-2105/10/384/

See Also

ridge.cv

Examples

1
2
3
4
n<-20
p<-40
X<-matrix(rnorm(n*p),ncol=p)
pc<-ridge.net(X,k=5)

Example output

Loading required package: MASS
Loading required package: glmnet
Loading required package: Matrix
Loading required package: foreach
Loaded glmnet 2.0-12

Loading required package: ppls
Loading required package: splines
Loading required package: Epi

Attaching package: 'Epi'

The following object is masked from 'package:base':

    merge.data.frame

Loading required package: GeneNet
Loading required package: corpcor
Loading required package: longitudinal
Loading required package: fdrtool
Performing local ridge regressions
Vertex no 10 ...20 ...30 ...40 ...

parcor documentation built on May 1, 2019, 9:10 p.m.