R/pbwalk.R

pbwalk <-
function (X, FUN, ..., cl = NULL)
{
    FUN <- match.fun(FUN)
    ## wrapper function
    FUN2 <- function(...) {
        FUN(...)
        invisible(NULL)
    }
    ## call for side effects only
    pblapply(X, FUN2, ..., cl = cl)
    ## output is same as input (for chaining)
    invisible(X)
}

# pbwalk <-
# function (X, FUN, ..., cl = NULL)
# {
#     FUN <- match.fun(FUN)
#     FUN2 <- function(...) {
#         FUN(...)
#         invisible(NULL)
#     }
#     if (!is.vector(X) || is.object(X))
#         X <- as.list(X)
#     if (!length(X))
#         return(lapply(X, FUN2, ...))
#     ## catch single node requests and forking on Windows
#     if (!is.null(cl)) {
#         if (.Platform$OS.type == "windows") {
#             if (!inherits(cl, "cluster"))
#                 cl <- NULL
#         } else {
#             if (inherits(cl, "cluster")) {
#                 if (length(cl) < 2L)
#                     cl <- NULL
#             } else {
#                 if (cl < 2)
#                     cl <- NULL
#             }
#         }
#     }
#     nout <- as.integer(getOption("pboptions")$nout)
#     ## sequential evaluation
#     if (is.null(cl)) {
#         if (!dopb())
#             return(lapply(X, FUN2, ...))
#         Split <- splitpb(length(X), 1L, nout = nout)
#         B <- length(Split)
#         pb <- startpb(0, B)
#         on.exit(closepb(pb), add = TRUE)
#         rval <- vector("list", B)
#         for (i in seq_len(B)) {
#             rval[i] <- list(lapply(X[Split[[i]]], FUN2, ...))
#             setpb(pb, i)
#         }
#     ## parallel evaluation
#     } else {
#         ## snow type cluster
#         if (inherits(cl, "cluster")) {
#             ## switch on load balancing if needed
#             PAR_FUN <- if (isTRUE(getOption("pboptions")$use_lb))
#                 parallel::parLapplyLB else parallel::parLapply
#             if (!dopb())
#                 return(PAR_FUN(cl, X, FUN2, ...))
#             ## define split here and use that for counter
#             Split <- splitpb(length(X), length(cl), nout = nout)
#             B <- length(Split)
#             pb <- startpb(0, B)
#             on.exit(closepb(pb), add = TRUE)
#             rval <- vector("list", B)
#             for (i in seq_len(B)) {
#                 rval[i] <- list(PAR_FUN(cl, X[Split[[i]]], FUN2, ...))
#                 setpb(pb, i)
#             }
#         ## multicore type forking
#         } else {
#             if (!dopb())
#                 return(parallel::mclapply(X, FUN2, ..., mc.cores = as.integer(cl)))
#             ## define split here and use that for counter
#             Split <- splitpb(length(X), as.integer(cl), nout = nout)
#             B <- length(Split)
#             pb <- startpb(0, B)
#             on.exit(closepb(pb), add = TRUE)
#             rval <- vector("list", B)
#             for (i in seq_len(B)) {
#                 rval[i] <- list(parallel::mclapply(X[Split[[i]]], FUN2, ...,
#                     mc.cores = as.integer(cl)))
#                 setpb(pb, i)
#             }
#         }
#     }
#     ## output is same as input (for chaining)
#     invisible(X)
# }

Try the pbapply package in your browser

Any scripts or data that you put into this service are public.

pbapply documentation built on July 9, 2023, 7:41 p.m.