pcalg: Methods for Graphical Models and Causal Inference

Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.

Package details

AuthorMarkus Kalisch [aut, cre], Alain Hauser [aut], Martin Maechler [aut], Diego Colombo [ctb], Doris Entner [ctb], Patrik Hoyer [ctb], Antti Hyttinen [ctb], Jonas Peters [ctb], Nicoletta Andri [ctb], Emilija Perkovic [ctb], Preetam Nandy [ctb], Philipp Ruetimann [ctb], Daniel Stekhoven [ctb], Manuel Schuerch [ctb], Marco Eigenmann [ctb], Leonard Henckel [ctb], Joris Mooij [ctb]
MaintainerMarkus Kalisch <kalisch@stat.math.ethz.ch>
LicenseGPL (>= 2)
Version2.7-11
URL https://pcalg.r-forge.r-project.org/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("pcalg")

Try the pcalg package in your browser

Any scripts or data that you put into this service are public.

pcalg documentation built on May 29, 2024, 5:24 a.m.