Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
Package details |
|
---|---|
Author | Markus Kalisch [aut, cre], Alain Hauser [aut], Martin Maechler [aut], Diego Colombo [ctb], Doris Entner [ctb], Patrik Hoyer [ctb], Antti Hyttinen [ctb], Jonas Peters [ctb], Nicoletta Andri [ctb], Emilija Perkovic [ctb], Preetam Nandy [ctb], Philipp Ruetimann [ctb], Daniel Stekhoven [ctb], Manuel Schuerch [ctb], Marco Eigenmann [ctb], Leonard Henckel [ctb], Joris Mooij [ctb] |
Maintainer | Markus Kalisch <kalisch@stat.math.ethz.ch> |
License | GPL (>= 2) |
Version | 2.7-11 |
URL | https://pcalg.r-forge.r-project.org/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.