fciPlus | R Documentation |
Estimate a Partial Ancestral Graph (PAG) from observational data, using the FCI+ (Fast Causal Inference) algorithm, or from a combination of data from different (e.g., observational and interventional) contexts, using the FCI+-JCI (Joint Causal Inference) extension.
fciPlus(suffStat, indepTest, alpha, labels, p, verbose=TRUE,
selectionBias = TRUE, jci = c("0","1","12","123"), contextVars = NULL)
suffStat |
sufficient statistics: A named |
indepTest |
a |
alpha |
numeric significance level (in |
labels |
(optional) |
p |
(optional) number of variables (or nodes). May be specified
if |
selectionBias |
If |
jci |
String specifying the JCI assumptions that are used. It can be one of:
For more information, see Mooij et al. (2020). |
contextVars |
Subset of variable indices {1,...,p} that will be treated as context variables in the JCI extension of FCI+. |
verbose |
logical indicating if progress of the algorithm should be printed. The default is true, which used to be hard coded previously. |
A (possibly much faster) variation of FCI (Fast Causal Inference).
For details, please see the references, and also fci
.
An object of class
fciAlgo
(see
fciAlgo
) containing the estimated graph
(in the form of an adjacency matrix with various possible edge marks),
the conditioning sets that lead to edge removals (sepset) and several other
parameters.
Emilija Perkovic, Markus Kalisch (kalisch@stat.math.ethz.ch) and Joris Mooij.
T. Claassen, J. Mooij, and T. Heskes (2013). Learning Sparse Causal Models is not NP-hard. In UAI 2013, Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence
fci
for estimating a PAG using the FCI algorithm.
##################################################
## Example without latent variables
##################################################
## generate a random DAG ( p = 7 )
set.seed(42)
p <- 7
myDAG <- randomDAG(p, prob = 0.4)
## find PAG using the FCI+ algorithm on "Oracle"
suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)
m.fci <- fciPlus(suffStat, indepTest=gaussCItest,
alpha = 0.9999, p=p)
summary(m.fci)
## require("Rgraphviz")
sfsmisc::mult.fig(2, main="True DAG // fciPlus(.) \"oracle\" estimate")
plot(myDAG)
plot(m.fci)
##################################################
## Joint Causal Inference Example
## Mooij et al. (2020), Fig. 43(a), p. 97
##################################################
# Encode MAG as adjacency matrix
p <- 8 # total number of variables
V <- c("Ca","Cb","Cc","X0","X1","X2","X3","X4") # 3 context variables, 5 system variables
# amat[i,j] = 0 iff no edge btw i,j
# amat[i,j] = 1 iff i *-o j
# amat[i,j] = 2 iff i *-> j
# amat[i,j] = 3 iff i *-- j
amat <- rbind(c(0,2,2,2,0,0,0,0),
c(2,0,2,0,2,0,0,0),
c(2,2,0,0,2,2,0,0),
c(3,0,0,0,0,0,2,0),
c(0,3,3,0,0,3,0,2),
c(0,0,3,0,2,0,0,0),
c(0,0,0,3,0,0,0,2),
c(0,0,0,0,2,0,3,0))
rownames(amat)<-V
colnames(amat)<-V
# Make use of d-separation oracle as "independence test"
indepTest <- dsepAMTest
suffStat<-list(g=amat,verbose=FALSE)
# Derive PAG that represents the Markov equivalence class of the MAG with the FCI+ algorithm
# (assuming no selection bias)
# fci.pag <- fciPlus(suffStat, indepTest, alpha = 0.5, labels = V,
# selectionBias=FALSE,verbose=TRUE)
# Derive PAG with FCI+-JCI, the Joint Causal Inference extension of FCI
# (assuming no selection bias, and all three JCI assumptions)
# fcijci.pag <- fciPlus(suffStat, indepTest, alpha = 0.5, labels = V,
# selectionBias=FALSE, contextVars=c(1,2,3), jci="123", verbose=TRUE)
# Report results
# cat('True MAG:\n')
# print(amat)
# cat('PAG output by FCI+:\n')
# print(fci.pag@amat)
# cat('PAG output by FCI+-JCI:\n')
# print(fcijci.pag@amat)
# Read off causal features from the FCI PAG
#cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI+ PAG:\n')
#print(pag2anc(fci.pag@amat))
#cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI+ PAG:\n')
#print(pag2edge(fci.pag@amat))
#cat('Identified absence (-1) and presence (+1) of pairwise latent confounding from FCI+ PAG:\n')
#print(pag2conf(fci.pag@amat))
# Read off causal features from the FCI-JCI PAG
#cat('Identified absence (-1) and presence (+1) of ancestral causal relations from FCI+-JCI PAG:\n')
#print(pag2anc(fcijci.pag@amat))
#cat('Identified absence (-1) and presence (+1) of direct causal relations from FCI+-JCI PAG:\n')
#print(pag2edge(fcijci.pag@amat))
#cat('Ident. absence (-1) and presence (+1) of pairwise latent confounding from FCI+-JCI PAG:\n')
#print(pag2conf(fcijci.pag@amat))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.