circumcenter.basic.tri | R Documentation |
Returns the circumcenter of
a standard basic triangle form T_b=T((0,0),(1,0),(c_1,c_2))
given c_1
, c_2
where c_1
is in [0,1/2]
,
c_2>0
and (1-c_1)^2+c_2^2 \le 1
.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See (\insertCiteweisstein-tri-centers,ceyhan:comp-geo-2010;textualpcds) for triangle centers and (\insertCiteceyhan:arc-density-PE,ceyhan:arc-density-CS,ceyhan:dom-num-NPE-Spat2011;textualpcds) for the standard basic triangle form.
circumcenter.basic.tri(c1, c2)
c1 , c2 |
Positive real numbers representing the top vertex
in standard basic triangle form |
circumcenter of the standard basic triangle form
T_b=T((0,0),(1,0),(c_1,c_2))
given c_1
, c_2
as the arguments of the function.
Elvan Ceyhan
circumcenter.tri
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
oldpar <- par(pty = "s")
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.06,.06,-.03,0)
yc<-txt[,2]+c(.02,.02,.03,-.03,.02,.04,-.03)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
#for an obtuse triangle
c1<-.4; c2<-.3;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],CC[1])
Ylim<-range(Tb[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,.03,.07,.07,-.05,0)
yc<-txt[,2]+c(.02,.02,.04,-.03,.03,.04,.06)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.