pcmabc-package | R Documentation |
The package allows for Approximate Bayesian Computations (ABC) inference and simulation of stochastic processes evolving on top of a phylogenetic tree. The user is allowed to define their own stochastic process for the trait(s), be they univariate, multivariate continuous or discrete. The traits are allowed to influence the speciation and extinction rates generating the phylogeny. The user provides their own function that calculates these rates and one of the functions parameters is the current state of the phenotype. Two functionalities that are missing at the moment is for the speciation and extinction rates to be time-inhomogenous and that speciation events can influence the phenotypic evolution. It is planned to add this functionality. However, cladogenetic dynamics are possible at the start of the lineage, i.e. when a new lineage is separated from the main lineage. Hence, cladogenetic change can only be included as an event connected with a lineage (subpopulation) breaking off.
This software comes AS IS in the hope that it will be useful WITHOUT ANY WARRANTY, NOT even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Please understand that there may still be bugs and errors. Use it at your own risk. We take no responsibility for any errors or omissions in this package or for any misfortune that may befall you or others as a result of its use. Please send comments and report bugs to Krzysztof Bartoszek at krzbar@protonmail.ch .
Package: | pcmabc |
Type: | Package |
Version: | 1.1.3 |
Date: | 2022-05-06 |
License: | GPL (>= 2) |
LazyLoad: | yes |
The package allows for Approximate Bayesian Computations (ABC) inference and simulation
of stochastic processes evolving on top of a phylogenetic tree. The PCM_ABC()
function is responsible for the inference procedure. The user has to provide their
own functions to simulate the phenotype and tree. The package provides simulation
of the trait under stochastic differential equation (SDE) models by calling yuima.
In this case the user has to provide their own wrapper that creates an object
yuima will be able to handle (see Example). The user also has to provide
a function to calculate the instantaneous birth and death rates (or state that the
tree is independent of the trait). The package supports some simple birth rate
functions, see description of PCM_ABC()
.
One is allowed to simulate a trait process and tree process jointly (with the
trait influencing the tree's dynamics). This is done by the function
simulate_phylproc()
. The function
simulate_phenotype_on_tree()
simulates a trait process on top of a provided phylogeny. Finally,
the function simulate_sde_on_branch()
allows one to simulate an SDE
model along a time interval using yuima.
The trajectory of the trait(s) can be visualized using draw_phylproc()
.
Krzysztof Bartoszek, Pietro Lio' Maintainer: <krzbar@protonmail.ch>
Bartoszek, K. and Lio', P (2019). Modelling trait dependent speciation with Approximate Bayesian Computation. Acta Physica Polonica B Proceedings Supplement 12(1):25-47.
Kutsukake N., Innan H. (2014) Detecting Phenotypic Selection by Approximate Bayesian Computation in Phylogenetic Comparative Methods. In: Garamszegi L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg
Sheldon R. M. (2006). Simulation. Elsevier Academic Press.
## simulate 3d OUBM model ## This example requires the R package ape ## (to generate the tree in phylo format). set.seed(12345) phyltree<-ape::rphylo(n=5,birth=1,death=0) simulate_mvsl_sde<-function(time,params,X0,step){ A <- c(paste("(-",params$a11,")*(x1-(",params$psi1,")) -(",params$a12,")*(x2-(",params$psi2,"))-(",params$b11,")*x3",sep=""), paste("(-",params$a21,")*(x1-(",params$psi1,")) -(",params$a22,")*(x2-(",params$psi2,"))-(",params$b21,")*x3",sep=""),0) S <- matrix( c( params$s11, params$s12, 0, 0, params$s22 , 0, 0, 0, params$s33), 3, 3,byrow=TRUE) yuima.3d <- yuima::setModel(drift = A, diffusion = S, state.variable=c("x1","x2","x3"),solve.variable=c("x1","x2","x3") ) simulate_sde_on_branch(time,yuima.3d,X0,step) } sde.params<-list(a11=2.569531,a12=0,a21=0,a22=28.2608,b11=-5.482939, b21=-34.806936,s11=0.5513215,s12=1.059831,s22=1.247302,s33=1.181376, psi1=-2.4590422,psi2=-0.6197838) X0<-c(5.723548,4.103157,3.834698) step<-0.5 ## for keeping example's running time short <5s as CRAN policy, ## in reality should be much smaller e.g. step<-0.001 simres<-simulate_phenotype_on_tree(phyltree, simulate_mvsl_sde, sde.params, X0, step) ## visualize the simulation draw_phylproc(simres) ## extract the measurements at the tips phenotypedata<-get_phylogenetic_sample(simres) birth.params<-list(scale=1,maxval=2,abcstepsd=0.1,positivevars=c(TRUE,TRUE), fixed=c(FALSE,TRUE)) sde.params<-list(a11=2.569531,a12=0,a21=0,a22=28.2608,b11=-5.482939, b21=-34.806936,s11=0.5513215,s12=1.059831,s22=1.247302,s33=1.181376, psi1=-2.4590422,psi2=-0.6197838, positivevars=c(TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,FALSE), abcstepsd=rep(0.1,12)) par0<-list(phenotype.model.params=sde.params,birth.params=birth.params) fbirth<-"rate_id" ## should be rate_const but used here as an example ## for birth.params fdeath<-NULL X0<-c(5.723548,4.103157,3.834698) step<-0.5 ## for keeping example's running time short <5s as CRAN policy, ## in reality should be much smaller e.g. step<-0.001 abcsteps<-2 ## for keeping example's running time short <5s as CRAN policy, ## in reality should be much larger e.g. abcsteps<-500 eps<-1 ## for toy example's output to be useful, ## in reality should be much smaller e.g. eps<-0.25 ## estimate parameters ABCres<-PCM_ABC(phyltree=phyltree,phenotypedata=phenotypedata, par0=par0,phenotype.model=simulate_mvsl_sde,fbirth=fbirth,fdeath=fdeath,X0=X0, step=step,abcsteps=abcsteps,eps=eps)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.