simulate_sde_on_branch | R Documentation |
The function simulates a stochastic differential equation on a branch using the yuima package.
simulate_sde_on_branch(branch.length, model.yuima, X0, step)
branch.length |
The length of the branch. |
model.yuima |
A object that yuima can understand in order to simulate a stochastic differential equation, see Example. |
X0 |
The value at the start of the branch. |
step |
The simulation step size that is provided to yuima. |
The function is a wrapper for calling yuima::simulate()
.
It returns a matrix whose first row are the time points on the branch and the remaining rows the values of the trait(s).
Krzysztof Bartoszek
Bartoszek, K. and Lio', P (2019). Modelling trait dependent speciation with Approximate Bayesian Computation. Acta Physica Polonica B Proceedings Supplement 12(1):25-47.
Brouste A., Fukasawa M., Hino H., Iacus S. M., Kamatani K., Koike Y., Masuda H., Nomura R., Ogihara T., Shimuzu Y., Uchida M., Yoshida N. (2014). The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations. Journal of Statistical Software, 57(4): 1-51.
Iacus S. M., Mercuri L., Rroji E. (2017). COGARCH(p,q): Simulation and Inference with the yuima Package. Journal of Statistical Software, 80(4): 1-49.
setModel
, setSampling
,
simulate
,
## simulate a 3D OUBM process on a branch set.seed(12345) A <-c("-(x1-1)-2*x3","-(x2+1)+2*x3",0) S <- matrix( c( 1, 2, 0, 0, 1 , 0, 0, 0, 2), 3, 3,byrow=TRUE) yuima.3d <- yuima::setModel(drift = A, diffusion = S, state.variable=c("x1","x2","x3"),solve.variable=c("x1","x2","x3") ) X0<-c(0,0,0) step<-0.5 ## for keeping example's running time short <5s as CRAN policy, ## in reality should be much smaller e.g. step<-0.001 time<-1 simulate_sde_on_branch(time,yuima.3d,X0,step)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.