Nothing
## -----------------------------------------------------------------------------
knitr::opts_chunk$set(eval = FALSE)
## ---- message=FALSE, warning=FALSE--------------------------------------------
# # Load packages
# library(pct)
# library(tmap)
## ---- message=FALSE, warning=FALSE--------------------------------------------
# #Get road network for preselected regin
# rnet = pct::get_pct_rnet(region = "oxfordshire")
# #Calculate road length
# rnet$segment_length = as.numeric(sf::st_length(rnet))
# #Calculate daily km's cycled
# rnet$m_cycled_per_working_day = rnet$segment_length * rnet$bicycle
## ---- message=FALSE, warning=FALSE--------------------------------------------
# # Get road network for preselected regin
# zones = pct::get_pct_zones(region = "oxfordshire")
# summary(sf::st_is_valid(zones))
# zones = sf::st_make_valid(zones)
# summary(sf::st_is_valid(zones))
# cycled_m_per_zone = aggregate(rnet["m_cycled_per_working_day"], zones, FUN = sum)
## ---- message=FALSE, warning=FALSE--------------------------------------------
# zones$mkm_cycled_for_commuting_per_year_estimated = cycled_m_per_zone$m_cycled_per_working_day *
# 2 * 200 / # estimate of trips days per year, morning and afternoon
# 1e9
## ---- message=FALSE, warning=FALSE, fig.align="center", fig.width = 7, fig.height = 6----
# tm_shape(zones) +
# tm_fill(
# col = "mkm_cycled_for_commuting_per_year_estimated",
# style = "quantile",
# palette = "plasma",
# title = "Yearly distance cycled by commuters per day\n(2011 Census Data)",
# legend.size.is.portrait = TRUE
# ) +
# tm_layout(
# title = "OXFORDSHIRE",
# title.position = c("left", "top"),
# bg.color = "honeydew3",
# outer.bg.color = "honeydew",
# legend.stack = "horizontal",
# legend.outside = TRUE,
# legend.outside.position = "left",
# frame.lwd = 5
# )
## ---- message=FALSE, warning=FALSE--------------------------------------------
# pct_zones_rnet_current = function(region_name) {
# # Get road network for preselected regin
# rnet = pct::get_pct_rnet(region = region_name)
# # Calculate road length
# rnet$segment_length = as.numeric(sf::st_length(rnet))
# # Calculate daily km cycled
# rnet$m_cycled_per_working_day = rnet$segment_length * rnet$bicycle
# # Convert to centroids to avoid double counting flows that cross zones
# rnet_centroids = sf::st_centroid(rnet)
# # Get LSOA spatial data
# zones = sf::st_make_valid(pct::get_pct_zones(region = region_name))
# # Calculate cyced miles per zone
# cycled_m_per_zone = aggregate(rnet_centroids["m_cycled_per_working_day"], zones, FUN = sum)
# # Calculate miles cycled per year from commuting
# zones$mkm_cycled_for_commuting_per_year_estimated = cycled_m_per_zone$m_cycled_per_working_day *
# 2 * 200 / # estimate of trips days per year, morning and afternoon
# 1e9
# # Plot results
# tmap_mode("plot")
# tm_shape(zones) +
# tm_fill(
# col = "mkm_cycled_for_commuting_per_year_estimated",
# style = "quantile",
# palette = "plasma",
# title = "Million km's cycled by commuters per year\n(2011 Census Data)",
# legend.size.is.portrait = TRUE
# ) +
# tm_layout(
# title = toupper(region_name),
# title.position = c("left", "top"),
# bg.color = "honeydew3",
# outer.bg.color = "honeydew",
# legend.stack = "horizontal",
# legend.outside = TRUE,
# legend.outside.position = "bottom",
# frame.lwd = 5
# )
#
# }
## ---- message=FALSE, warning=FALSE, fig.align="center", fig.width = 7, fig.height = 6----
# oxfordshire_results = pct_zones_rnet_current(region_name = "oxfordshire")
# cambrideshire_results = pct_zones_rnet_current(region_name = "cambridgeshire")
# tmap_arrange(oxfordshire_results, cambrideshire_results, ncol = 2)
## ---- message=FALSE, warning=FALSE, fig.align="center", fig.width = 7, fig.height = 6----
# london_results = pct_zones_rnet_current(region_name = "london")
# gm_results = pct_zones_rnet_current(region_name = "greater-manchester")
# #tmap_mode("view")
# tmap_arrange(london_results, gm_results, ncol = 2)
## ---- message=FALSE, warning=FALSE--------------------------------------------
# pct_zones_rnet_ebikes <- function(region_name) {
# # Get road network for pre-selected region
# rnet = pct::get_pct_rnet(region = region_name)
# # Calculate road length
# rnet$segment_length = as.numeric(sf::st_length(rnet))
# # Calculate daily miles cycled
# rnet$m_cycled_per_working_day = rnet$segment_length * rnet$ebike_slc
# # Convert to centroids to avoid double counting flows that cross zones
# rnet_centroids = sf::st_centroid(rnet)
# # Get LSOA spatial data
# zones = sf::st_make_valid(pct::get_pct_zones(region = region_name))
# # Calculate cycled miles per zone
# cycled_m_per_zone = aggregate(rnet_centroids["m_cycled_per_working_day"], zones, FUN = sum)
# # Calculate km cycled per year from commuting
# zones$mkm_cycled_for_commuting_per_year_estimated = cycled_m_per_zone$m_cycled_per_working_day *
# 2 * 200 / # estimate of trips days per year, morning and afternoon
# 1e9
# #Plot results
# tmap_mode("plot")
# tm_shape(zones) +
# tm_fill(
# col = "mkm_cycled_for_commuting_per_year_estimated",
# style = "quantile",
# palette = "plasma",
# title = "Million km's cycled by commuters per year\n(E-Bike model)",
# legend.size.is.portrait = TRUE
# ) +
# tm_layout(
# title = toupper(region_name),
# title.position = c("left", "top"),
# bg.color = "honeydew3",
# outer.bg.color = "honeydew",
# legend.stack = "horizontal",
# legend.outside = TRUE,
# legend.outside.position = "bottom",
# frame.lwd = 5
# )
# }
## ---- message=FALSE, warning=FALSE, fig.align="center", fig.width = 7, fig.height = 6----
# london_results_ebikes = pct_zones_rnet_ebikes(region_name = "london")
# gm_results_ebikes = pct_zones_rnet_ebikes(region_name = "greater-manchester")
# #tmap_mode("view")
# tmap_arrange(london_results_ebikes, gm_results_ebikes, ncol = 2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.