Nothing
## ---- eval=FALSE, echo=FALSE--------------------------------------------------
# # Aim: generate references.bib - run only if references change
# refs = RefManageR::ReadZotero(group = "418217", .params = list(collection = "8Y9DU4DR", limit = 100))
# RefManageR::WriteBib(refs, "vignettes/references.bib")
# citr::tidy_bib_file(
# rmd_file = "vignettes/pct.Rmd",
# messy_bibliography = "vignettes/references.bib",
# file = "vignettes/refs.bib")
# file.remove("vignettes/references.bib")
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
knitr::opts_chunk$set(eval = FALSE)
## ---- eval=FALSE--------------------------------------------------------------
# remotes::install_github("ITSLeeds/pct")
## -----------------------------------------------------------------------------
# library(pct)
## ---- message=FALSE-----------------------------------------------------------
# library(sf)
# library(dplyr)
# library(stplanr)
# library(leaflet)
# library(ggplot2)
# library(pbapply)
## -----------------------------------------------------------------------------
# wight_centroids = get_pct_centroids(region = "isle-of-wight", geography = "msoa")
# wight_zones = get_pct_zones(region = "isle-of-wight", geography = "msoa")
## ----centroids, fig.show='hold'-----------------------------------------------
# plot(wight_centroids[, "bicycle"])
# plot(wight_zones[, "bicycle"])
## ----get_pct_lines------------------------------------------------------------
# wight_lines_pct = get_pct_lines(region = "isle-of-wight", geography = "msoa")
## -----------------------------------------------------------------------------
# wight_lines_30 = wight_lines_pct %>%
# top_n(30, bicycle)
## ---- pct-lines-min-----------------------------------------------------------
# lwd = wight_lines_30$all / mean(wight_lines_30$all) * 5
# plot(wight_lines_30[c("bicycle", "car_driver", "foot")], lwd = lwd)
## ----leaflines, out.width="100%"----------------------------------------------
# pal = colorNumeric(palette = "RdYlBu", domain = wight_lines_30$bicycle)
# leaflet(data = wight_lines_30) %>%
# addTiles() %>%
# addPolylines(weight = lwd,
# color = ~ pal(bicycle)) %>%
# addLegend(pal = pal, values = ~bicycle)
## ----isle-pct-bike, echo=FALSE, out.width="100%"------------------------------
# # i = magick::image_read("vignettes/isle-pct-bike.png")
# knitr::include_graphics("https://user-images.githubusercontent.com/1825120/54882128-c4f02980-4e4e-11e9-8eb8-49c43507165a.png")
## ---- eval=FALSE--------------------------------------------------------------
# wight_od_all = get_od(region = "wight")
## ---- echo=FALSE, eval=FALSE--------------------------------------------------
# saveRDS(wight_od_all, "wight_od_all.Rds")
# piggyback::pb_upload("wight_od_all.Rds")
# piggyback::pb_download_url("wight_od_all.Rds")
## ----echo=FALSE---------------------------------------------------------------
# u = "https://github.com/ITSLeeds/pct/releases/download/0.5.0/wight_od_all.Rds"
# wight_od_all = readRDS(url(u))
## ---- message=FALSE-----------------------------------------------------------
# summary(wight_od_all$geo_code1 %in% wight_centroids$geo_code)
# summary(wight_od_all$geo_code2 %in% wight_centroids$geo_code)
## -----------------------------------------------------------------------------
# wight_od = wight_od_all %>%
# filter(geo_code2 %in% wight_centroids$geo_code)
## ----pct-lines----------------------------------------------------------------
# wight_lines = od2line(wight_od, wight_centroids)
# nrow(wight_lines)
# sum(wight_lines$all)
## ---- eval=FALSE, echo=FALSE--------------------------------------------------
# # aim: test result of get_desire_lines
# library(pct)
# wight_od_all = get_od(region = "wight")
# wight_od = wight_od_all[
# wight_od_all$geo_code2 %in% wight_centroids$geo_code,]
# wight_lines_census = stplanr::od2line(wight_od, wight_centroids)
# wight_lines_census2 = get_desire_lines(region = "wight")
# nrow(wight_lines_census)
# nrow(wight_lines_census2)
## -----------------------------------------------------------------------------
# wight_lines_census = wight_lines %>%
# filter(geo_code1 != geo_code2)
# nrow(wight_lines_census)
# sum(wight_lines_census$all)
## -----------------------------------------------------------------------------
# wight_lines_census1 = od_oneway(
# wight_lines_census,
# attrib = c("all", "bicycle")
# )
# nrow(wight_lines_census1) / nrow(wight_lines_census)
# sum(wight_lines_census1$all) / sum(wight_lines_census$all)
## ----pct-routes-fast, eval=FALSE----------------------------------------------
# wight_routes_fast = route(
# l = wight_lines_census1,
# route_fun = cyclestreets::journey,
# plan = "fastest")
## ---- echo=FALSE, eval=FALSE--------------------------------------------------
# saveRDS(wight_routes_fast, "wight_routes_fast.Rds")
# piggyback::pb_upload("wight_routes_fast.Rds")
# piggyback::pb_download_url("wight_routes_fast.Rds")
## ---- eval=FALSE--------------------------------------------------------------
# u = "https://github.com/ITSLeeds/pct/releases/download/0.5.0/wight_routes_fast.Rds"
# wight_routes_fast = readRDS(url(u))
## -----------------------------------------------------------------------------
# wight_lines_census_30 = wight_lines_census1 %>%
# top_n(30, bicycle)
## ---- eval=FALSE--------------------------------------------------------------
# wight_routes_30_cs = wight_routes_fast %>%
# group_by(geo_code1, geo_code2) %>%
# summarise(
# all = mean(all),
# bicycle = mean(bicycle),
# av_incline = weighted.mean(gradient_smooth, w = distances),
# length = sum(distances),
# time = sum(time)
# ) %>%
# ungroup() %>%
# top_n(30, bicycle)
## ---- eval=FALSE, echo=FALSE--------------------------------------------------
# usethis::use_data(wight_routes_30_cs, overwrite = TRUE)
## -----------------------------------------------------------------------------
# d = as.numeric(st_length(wight_lines_census_30)) / 1000
# plot(d, wight_routes_30_cs$length / 1000, xlim = c(0, 10))
# abline(a = c(0, 1))
## -----------------------------------------------------------------------------
# plot(wight_lines_30$rf_dist_km, wight_routes_30_cs$length)
## ----pct-goducth--------------------------------------------------------------
# pcycle_govtarget = uptake_pct_govtarget(
# distance = wight_routes_30_cs$length,
# gradient = wight_routes_30_cs$av_incline * 100
# )
## -----------------------------------------------------------------------------
# wight_routes_30_cs$govtarget = wight_lines_census_30$bicycle +
# pcycle_govtarget * wight_lines_census_30$all
# wight_routes_30_cs$govtarget_pct = wight_lines_30$govtarget_slc
#
# ggplot(wight_routes_30_cs) +
# geom_point(aes(length, govtarget), colour = "red") +
# geom_point(aes(length, govtarget_pct), colour = "blue")
# cor(wight_routes_30_cs$govtarget, wight_routes_30_cs$govtarget_pct)
## -----------------------------------------------------------------------------
# wight_routes_30_ls = sf::st_cast(wight_routes_30_cs, "LINESTRING")
# rnet = overline(wight_routes_30_ls, "govtarget")
# plot(rnet)
## ---- eval=FALSE--------------------------------------------------------------
# wight_routes_fast_gt = wight_routes_fast %>%
# group_by(geo_code1, geo_code2) %>%
# mutate(
# govtarget = uptake_pct_govtarget(sum(distances), mean(gradient_smooth)) *
# (sum(all) + sum(bicycle))
# )
# wight_routes_fast_gt = sf::st_cast(wight_routes_fast_gt, "LINESTRING")
# wight_rnet = overline(wight_routes_fast_gt, "govtarget")
## ---- eval=FALSE, echo=FALSE--------------------------------------------------
# usethis::use_data(wight_rnet, overwrite = TRUE)
## ---- out.width="100%"--------------------------------------------------------
# pal = colorNumeric(palette = "RdYlBu", domain = wight_rnet$govtarget)
# leaflet(data = wight_rnet) %>%
# addTiles() %>%
# addPolylines(color = ~ pal(govtarget)) %>%
# addLegend(pal = pal, values = ~govtarget)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.