variable.names.pdynmc: Extract Names of Explanatory Variables of Fitted Model.

View source: R/pdynmc_fitMethods.R

variable.names.pdynmcR Documentation

Extract Names of Explanatory Variables of Fitted Model.

Description

variable.names.pdynmc extracts explanatory variables from an object of class 'pdynmc'.

Usage

## S3 method for class 'pdynmc'
variable.names(object, ...)

Arguments

object

An object of class 'pdynmc'.

...

further arguments.

Value

Extract explanatory variables from an object of class 'pdynmc'.

Author(s)

Markus Fritsch

See Also

pdynmc for fitting a linear dynamic panel data model.

Examples

## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
dat <- dat[c(1:140), ]

## Code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
    use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
    include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
    fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
    varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
    include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
    w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
    opt.meth = "none")
variable.names(m1)


## Load data
 data(ABdata, package = "pdynmc")
 dat <- ABdata
 dat[,c(4:7)] <- log(dat[,c(4:7)])

 m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
    use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
    include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
    fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
    varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
    include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
    w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
    opt.meth = "none")
 variable.names(m1)




pdynmc documentation built on Sept. 12, 2024, 7:42 a.m.