Nothing
#' Summary method for PRC-MLPMM model fits
#'
#' @param object an object of class \code{prcmlpmm}
#' @param ... additional arguments
#'
#' @return An object of class `sprcmlpmm`
#' @export
#' @author Mirko Signorelli
#' @references
#' Signorelli, M. (2024). pencal: an R Package for the Dynamic
#' Prediction of Survival with Many Longitudinal Predictors.
#' To appear in: The R Journal. Preprint: arXiv:2309.15600
#'
#' Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C,
#' The MARK-MD Consortium, Tsonaka, R. (2021).
#' Penalized regression calibration: a method for the prediction
#' of survival outcomes using complex longitudinal and
#' high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196.
#' DOI: 10.1002/sim.9178
#' @seealso \code{\link{fit_prcmlpmm}}, \code{\link{print.prcmlpmm}}
summary.prcmlpmm = function(object, ...) {
out = getinfo_step3(object)
class(out) = 'sprcmlpmm'
out
}
#' @method print sprcmlpmm
#' @export
print.sprcmlpmm = function(x, digits = 4, ...) {
print.sprclmm(x, digits)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.