Nothing
#' Summary method for PRC-LMM model fits
#'
#' @param object an object of class \code{prclmm}
#' @param ... additional arguments
#'
#' @return An object of class `sprclmm`
#' @importFrom methods is
#' @export
#' @author Mirko Signorelli
#' @references
#' Signorelli, M. (2024). pencal: an R Package for the Dynamic
#' Prediction of Survival with Many Longitudinal Predictors.
#' To appear in: The R Journal. Preprint: arXiv:2309.15600
#'
#' Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C,
#' The MARK-MD Consortium, Tsonaka, R. (2021).
#' Penalized regression calibration: a method for the prediction
#' of survival outcomes using complex longitudinal and
#' high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196.
#' DOI: 10.1002/sim.9178
#' @seealso \code{\link{fit_prclmm}}, \code{\link{print.prclmm}}
summary.prclmm = function(object, ...) {
out = getinfo_step3(object)
class(out) = 'sprclmm'
out
}
#' @method print sprclmm
#' @export
print.sprclmm = function(x, digits = 4, ...) {
mod = x$model_info
dat = x$data_info
paste('Fitted model:', mod$fitted_model) |> cat(); cat('\n')
paste('Penalty function used:', mod$penalty) |> cat(); cat('\n')
paste('Tuning parameters:') |> cat(); cat('\n')
print(x$tuning)
paste('Sample size:', dat$n) |> cat(); cat('\n')
paste('Number of events:', dat$n_ev) |> cat(); cat('\n')
paste('Bootstrap optimism correction:', mod$cboc) |> cat(); cat('\n')
show = round(x$coefficients, digits)
paste('Penalized likelihood estimates (rounded to ', digits, ' digits):',
sep = '') |> cat(); cat('\n')
print(show) # cat( ) would remove the variable names!
}
getinfo_step3 = function(x) {
type = ifelse(is(x, 'prclmm'), 'PRC-LMM', 'PRCMLPMM')
model_info = list(
fitted_model = type,
penalty = eval(x$call$penalty),
cboc = ifelse(x$n.boots == 0, 'not computed',
paste('computed using', x$n.boots, 'bootstrap samples'))
)
data_info = list(
n = x$surv.data |> nrow(),
n_events = x$surv.data$event |> sum()
)
coefficients = coef(x$pcox.orig, s = 'lambda.min') |>
as.matrix() |> t()
out = list(model_info = model_info,
data_info = data_info,
coefficients = coefficients,
tuning = x$tuning)
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.