Nothing
#' Summary for step 2 of PRC
#'
#' Summary function to extract basic descriptives from `summarize_lmms`
#' and `summarize_mlpmms`
#'
#' @param object the output of `summarize_lmms` or `summarize_mlpmms`
#' @param ... additional arguments
#'
#' @return Information about number of predicted random effects and sample size
#'
#' @export
#'
#' @author Mirko Signorelli
#' @references
#' Signorelli, M. (2024). pencal: an R Package for the Dynamic
#' Prediction of Survival with Many Longitudinal Predictors.
#' To appear in: The R Journal. Preprint: arXiv:2309.15600
#'
#' Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C,
#' The MARK-MD Consortium, Tsonaka, R. (2021).
#' Penalized regression calibration: a method for the prediction
#' of survival outcomes using complex longitudinal and
#' high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196.
#' DOI: 10.1002/sim.9178
#'
#' @seealso \code{\link{summarize_lmms}}, \code{\link{summarize_mlpmms}}
summary.ranefs = function(object, ...) {
dims = dim(object$ranef.orig)
paste('Number of predicted random effect variables:', dims[2]) |> cat(); cat('\n')
paste('Sample size:', dims[1]) |> cat()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.