ipec | R Documentation |
Summary measures of prediction error curves
ipec(pe, eval.times, type=c("Riemann", "Lebesgue", "relativeLebesgue"), response=NULL)
pe |
prediction error at different time points. Vector of length of |
eval.times |
evalutation time points |
type |
type of integration. 'Riemann' estimates Riemann integral, 'Lebesgue' uses the probability density as weights, while 'relativeLebesgue' delivers the difference to the null model (using the same weights as for 'Lebesgue'). |
response |
survival object ( |
For survival data, prediction error at each evaluation time point can be extracted of a peperr
object by function perr
. A summary measure can then be obtained via intgrating over time. Note that the time points used for evaluation are stored in list element attribute
of the peperr
object.
ipec |
Value of integrated prediction error curve. Integer or vector, if |
perr
## Not run:
n <- 200
p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
time <- ifelse(real.time <= cens.time,real.time,cens.time)
# Example:
# Obtain prediction error estimate fitting a Cox proportional hazards model
# using CoxBoost
# through 10 bootstrap samples
# with fixed complexity 50 and 75
# and aggregate using prediction error curves
peperr.object <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, complexity=c(50, 75),
indices=resample.indices(n=length(time), method="sub632", sample.n=10))
# 632+ estimate for both complexity values at each time point
prederr <- perr(peperr.object)
# Integrated prediction error curve for both complexity values
ipec(prederr, eval.times=peperr.object$attribute, response=Surv(time, status))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.