pgam: Poisson-Gamma Additive Models.

This work is an extension of the state space model for Poisson count data, Poisson-Gamma model, towards a semiparametric specification. Just like the generalized additive models (GAM), cubic splines are used for covariate smoothing. The semiparametric models are fitted by an iterative process that combines maximization of likelihood and backfitting algorithm.

AuthorWashington Junger <wjunger@ims.uerj.br> and Antonio Ponce de Leon <ponce@ims.uerj.br>
Date of publication2012-01-13 16:07:51
MaintainerWashington Junger <wjunger@ims.uerj.br>
LicenseGPL (>= 2)
Version0.4.12

View on CRAN

Functions

AIC.pgam Man page
aihrio Man page
backfitting Man page
bkfsmooth Man page
coef.pgam Man page
deviance.pgam Man page
elapsedtime Man page
envelope Man page
envelope.pgam Man page
f Man page
fitted.pgam Man page
fnz Man page
formparser Man page
framebuilder Man page
g Man page
intensity Man page
link Man page
logLik.pgam Man page
lpnorm Man page
periodogram Man page
pgam Man page
pgam.filter Man page
pgam.fit Man page
pgam.hes2se Man page
pgam.likelihood Man page
pgam.par2psi Man page
pgam.psi2par Man page
plot.pgam Man page
predict.pgam Man page
print.pgam Man page
print.summary.pgam Man page
residuals.pgam Man page
summary.pgam Man page
tbl2tex Man page

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.