phaseR: Phase Plane Analysis of One and Two Dimensional Autonomous ODE Systems

Share:

phaseR is an R package for the qualitative analysis of one and two dimensional autonomous ODE systems, using phase plane methods. Programs are available to identify and classify equilibrium points, plot the direction field, and plot trajectories for multiple initial conditions. In the one dimensional case, a program is also available to plot the phase portrait. Whilst in the two dimensional case, additionally a program is available to plot nullclines. Many example systems are provided for the user.

Author
Michael J. Grayling
Date of publication
2014-07-16 17:14:50
Maintainer
Michael J. Grayling <mjg211@cam.ac.uk>
License
GPL-3
Version
1.3

View on CRAN

Man pages

competition
Species Competition Model
example1
Example ODE System Number One
example10
Example ODE System Number Ten
example11
Example ODE System Number Eleven
example12
Example ODE System Number Twelve
example13
Example ODE System Number Thirteen
example14
Example ODE System Number Fourteen
example15
Example ODE System Number Fifteen
example2
Example ODE System Number Two
example3
Example ODE System Number Three
example4
Example ODE System Number Four
example5
Example ODE System Number Five
example6
Example ODE System Number Six
example7
Example ODE System Number Seven
example8
Example ODE System Number Eight
example9
Example ODE System Number Nine
exponential
The Exponential Growth Model
flowField
Flow Field
lindemannMechanism
The Lindemann Mechanism
logistic
The Logistic Growth Model
lotkaVolterra
The Lotka Volterra Model
monomolecular
The Monomolecular Growth Model
nullclines
Nullclines
numericalSolution
Numerical Solution and Plotting
phasePortrait
Phase Portrait Plot
phaseR-package
Phase Plane Analysis of One and Two Dimensional Autonomous...
simplePendulum
The Simple Pendulum
SIR
The SIR Epidemic Model
stability
Stability Analysis
trajectory
Phase Plane Trajectory Plotting
vanDerPol
The Van Der Pol Oscillator
vonBertalanffy
The von Bertalanffy Growth Model

Files in this package

phaseR
phaseR/inst
phaseR/inst/doc
phaseR/inst/doc/phaseR_Guide.pdf
phaseR/inst/doc/phaseR_Exercise_Solutions.pdf
phaseR/NAMESPACE
phaseR/R
phaseR/R/SIR.R
phaseR/R/example5.R
phaseR/R/example12.R
phaseR/R/example4.R
phaseR/R/flowField.R
phaseR/R/nullclines.R
phaseR/R/example9.R
phaseR/R/vonBertalanffy.R
phaseR/R/stability.R
phaseR/R/example3.R
phaseR/R/example8.R
phaseR/R/competition.R
phaseR/R/vanDerPol.R
phaseR/R/trajectory.R
phaseR/R/numericalSolution.R
phaseR/R/monomolecular.R
phaseR/R/example13.R
phaseR/R/example1.R
phaseR/R/lindemannMechanism.R
phaseR/R/simplePendulum.R
phaseR/R/phasePortrait.R
phaseR/R/exponential.R
phaseR/R/example14.R
phaseR/R/lotkaVolterra.R
phaseR/R/example10.R
phaseR/R/example7.R
phaseR/R/example15.R
phaseR/R/logistic.R
phaseR/R/example2.R
phaseR/R/example11.R
phaseR/R/example6.R
phaseR/MD5
phaseR/DESCRIPTION
phaseR/man
phaseR/man/monomolecular.Rd
phaseR/man/example10.Rd
phaseR/man/competition.Rd
phaseR/man/example2.Rd
phaseR/man/phasePortrait.Rd
phaseR/man/example7.Rd
phaseR/man/example12.Rd
phaseR/man/example3.Rd
phaseR/man/flowField.Rd
phaseR/man/vonBertalanffy.Rd
phaseR/man/phaseR-package.Rd
phaseR/man/example13.Rd
phaseR/man/trajectory.Rd
phaseR/man/logistic.Rd
phaseR/man/exponential.Rd
phaseR/man/simplePendulum.Rd
phaseR/man/example1.Rd
phaseR/man/SIR.Rd
phaseR/man/numericalSolution.Rd
phaseR/man/lotkaVolterra.Rd
phaseR/man/example15.Rd
phaseR/man/vanDerPol.Rd
phaseR/man/example11.Rd
phaseR/man/stability.Rd
phaseR/man/example9.Rd
phaseR/man/example5.Rd
phaseR/man/nullclines.Rd
phaseR/man/example14.Rd
phaseR/man/lindemannMechanism.Rd
phaseR/man/example8.Rd
phaseR/man/example4.Rd
phaseR/man/example6.Rd